
 
1 

Genome Publications 

https://doi.org/10.61096/978-81-990998-7-6_1 

 

Chapter 1 

 

Historical Founda�ons of Computer-Aided Drug Design: From Trial-and-

Error to Ra�onal Discovery 

 

Udaya Kumari Tula 

Research scien�st, DSK Biopharma Inc, Morrisville, North Carolina, USA 

Chinmaya Rath  

Lecturer, Usha college of Pharmacy, Dhadkidih,  

Behind DC Office P.O Madhurpur, Seraikela - 831013, Jharkhand, India 

Abhisek Pradhan 

 Lecturer, Usha college of Pharmacy, Dhadkidih,  

Behind DC Office P.O Madhurpur, Seraikela - 831013, Jharkhand, India 

 

Abstract: The evolu�on of computer-aided drug design (CADD) represents one of the most profound 

paradigms shi1s in pharmaceu�cal research, transforming empirical, trial-and-error experimenta�on 

into a ra�onal, hypothesis-driven scien�fic process. From the serendipitous discovery of penicillin in 

the early 20th century to the structure-based op�miza�on of HIV protease inhibitors and the data-

centric revolu�on driven by ar�ficial intelligence, CADD has con�nually redefined how molecules are 

designed, analysed, and op�mized for therapeu�c efficacy. Pioneering developments such as the 

determina�on of myoglobin’s crystal structure, the advent of molecular mechanics and quantum 

calcula�ons, and the introduc�on of the first quan�ta�ve structure–ac�vity rela�onship (QSAR) 

models laid the groundwork for modern ra�onal drug discovery. Over subsequent decades, 

methodologies such as molecular docking, pharmacophore modelling, homology modelling, 

molecular dynamics simula�ons, and mul�-dimensional QSAR expanded the predic�ve capacity of in 

silico research. Contemporary CADD integrates big data analy�cs, deep learning, and mul�-omics data, 

bridging molecular insights with systems pharmacology. This chapter traces the historical founda�ons 

of CADD, outlines its mul�disciplinary underpinnings, and contrasts structure-based and ligand-based 

paradigms. It also evaluates how computa�onal approaches have reshaped drug discovery economics, 

accelerated innova�on, and set the stage for future AI-integrated, ethically governed, and open-

science-driven discovery frameworks. 

 

Keywords: Computer-aided drug design, QSAR, molecular docking, structure-based design, ar�ficial 

intelligence. 

 

Citation: Udaya Kumari Tula, Chinmaya rath, Abhisek Pradhan. Historical Founda�ons of Computer-

Aided Drug Design: From Trial-and-Error to Ra�onal Discovery. Comprehensive Approaches in 

Computer-Aided Drug Design: QSAR, Docking, Screening, Homology, Pharmacophore and AI-Driven 

Insights. Genome Publica�on. 2025; Pp1-10. hDps://doi.org/10.61096/978-81-990998-7-6_1  

 



 
2 

1.0 INTRODUCTION 

Computer-aided drug design (CADD) encapsulates the integra�on of computa�onal methods 

with experimental pharmacology to ra�onalize and accelerate the discovery of therapeu�cally ac�ve 

compounds. The roots of CADD can be traced to the mid-20th century when the first structural data 

of biological macromolecules became available through X-ray crystallography. The determina�on of 

myoglobin and haemoglobin structures by Kendrew and Perutz in 1958–1960 represented a turning 

point that enabled scien�sts to visualize, at atomic resolu�on, how small molecules interact with 

protein ac�ve sites. These founda�onal insights laid the conceptual groundwork for structure-based 

drug design (SBDD) [1]. Before the computa�onal era, drug discovery was predominantly empirical 

driven by natural product screening and serendipity. The iden�fica�on of aspirin, sulphonamides, and 

penicillin relied more on observa�onal pharmacology than molecular understanding. The emergence 

of theore�cal models in the 1960s, par�cularly the Hansch–Fujita approach, provided the first 

quan�ta�ve framework to correlate chemical structure with biological ac�vity through 

physicochemical parameters such as lipophilicity (log P), electronic proper�es (σ constants), and steric 

effects [2]. This development marked the origin of QSAR and the conceptual birth of ra�onal drug 

design. 

The 1970s and 1980s witnessed the parallel evolu�on of computa�onal chemistry and 

molecular modelling. Advances in force field development (CHARMM, AMBER, GROMOS) and 

quantum mechanical methods enabled energy minimiza�on and conforma�onal analyses that could 

predict ligand–receptor interac�ons. The introduc�on of molecular docking algorithms, notably DOCK 

(1982) by Kuntz and colleagues, enabled in silico simula�on of ligand fiPng within protein ac�ve sites 

[3]. These innova�ons coincided with exponen�al increases in computa�onal speed, allowing the 

simula�on of increasingly complex biological systems. The comple�on of the Human Genome Project 

(2003) and the explosion of structural data within the Protein Data Bank (PDB) revolu�onized target-

based discovery, ushering in a new era of mul�-target and systems pharmacology. CADD approaches 

became indispensable for hit iden�fica�on, lead op�miza�on, and virtual screening, significantly 

reducing the cost and �me required for early-phase drug discovery [4]. The integra�on of machine 

learning and ar�ficial intelligence since the mid-2010s exemplified by deep learning frameworks like 

Depeche and AlphaFold has further expanded the boundaries of predic�ve modelling, moving beyond 

sta�c representa�ons toward dynamic, data-driven inference [5]. 

In its modern form, CADD is no longer limited to small molecules. It encompasses pep�des, 

nucleic acid therapeu�cs, biologics, and even protein–protein interac�on inhibitors. The historical 

trajectory of CADD thus mirrors the evolu�on of the broader pharmaceu�cal sciences from serendipity 

and empiricism to ra�onality, automa�on, and ar�ficial intelligence. This chapter aims to capture this 

con�nuum, contextualizing CADD as both a scien�fic discipline and a technological revolu�on that 

underpins 21st-century precision pharmacology. 

 

1.1 Mul�disciplinary Founda�ons: Chemical, Biological, and Computa�onal Principles 

CADD exists at the intersec�on of chemistry, biology, and computer science three disciplines 

whose integra�on has enabled the ra�onaliza�on of molecular recogni�on processes. Its chemical 

founda�on lies in medicinal chemistry and physical organic chemistry, where the principles of 

thermodynamics, molecular interac�ons, and structure–ac�vity rela�onships provide the framework 

for understanding how ligands modulate biological func�on. The biological founda�on is grounded in 

receptor theory, enzymology, and structural biology, which define the mechanis�c basis of drug–target 

interac�ons. The computa�onal founda�on encompasses molecular mechanics, quantum chemistry, 
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data science, and algorithmic modelling that enable the simula�on, predic�on, and visualiza�on of 

complex molecular systems [6]. Chemically, drug–receptor interac�ons are governed by non-covalent 

forces hydrogen bonding, electrosta�c interac�ons, van der Waals forces, and hydrophobic contacts. 

Quan�ta�ve models derived from physical chemistry, such as the Gibbs free energy of binding (ΔG = 

ΔH − TΔS), describe the balance between enthalpic and entropic contribu�ons that determine binding 

affinity. These principles form the founda�on of scoring func�ons used in molecular docking and free 

energy calcula�ons [7]. 

From a biological standpoint, the target structure dictates ligand complementarity. Advances 

in X-ray crystallography, nuclear magne�c resonance (NMR) spectroscopy, and cryo-electron 

microscopy (cryo-EM) have enabled the elucida�on of biomolecular architectures at atomic or near-

atomic resolu�on. These structural datasets are curated within repositories such as the PDB, which 

now contains over 220,000 entries, serving as the structural backbone for SBDD workflows [8]. Parallel 

developments in bioinforma�cs par�cularly sequence alignment algorithms and homology modelling 

have allowed the extrapola�on of unknown protein structures from homologous templates, 

broadening the applicability of CADD beyond crystallographic ally resolved proteins. Computa�onally, 

the theore�cal models underpinning CADD rely on both determinis�c and sta�s�cal frameworks. 

Determinis�c models, such as molecular mechanics and dynamics, solve the equa�ons of mo�on for 

molecular systems based on classical physics, while quantum mechanical approaches (e.g., density 

func�onal theory, Hartree–Fock) provide electron-level precision for reac�on mechanisms and energy 

states. Sta�s�cal and data-driven models QSAR, pharmacophore modelling, and machine learning 

capture complex non-linear rela�onships between molecular features and biological ac�vi�es [9]. 

Together, these paradigms enable a unified con�nuum from atomis�c simula�ons to predic�ve 

analy�cs. 

The synthesis of these disciplines created a new scien�fic ecosystem one where computa�onal 

predic�ons guide experimental synthesis and valida�on. This synergy not only enhances molecular 

understanding but also allows itera�ve feedback loops where experimental data refine computa�onal 

models, leading to con�nuous improvement in predic�ve accuracy. Thus, the mul�disciplinary 

founda�on of CADD is not sta�c but inherently adap�ve integra�ng innova�ons from structural 

biology, theore�cal chemistry, and data science to address emerging challenges in modern drug 

discovery. 

  

1.2 Structure-Based vs Ligand-Based Paradigms 

CADD methodologies are broadly categorized into structure-based and ligand-

based approaches, dis�nguished by whether the 3D structure of the biological target is known. These 

paradigms, while dis�nct in theore�cal founda�on, are complementary in prac�ce and o1en 

integrated in modern drug discovery pipelines. Structure-Based Drug Design (SBDD) relies on explicit 

knowledge of the target’s three-dimensional structure to model ligand interac�ons within the binding 

pocket. The availability of high-resolu�on structural data allows computa�onal tools to predict binding 

modes, affini�es, and conforma�onal changes upon ligand binding. Techniques under the SBDD 

umbrella include molecular docking, molecular dynamics simula�ons, free energy perturba�on (FEP) 

calcula�ons, and fragment-based design [10]. Notable historical milestones include the design of 

angiotensin-conver�ng enzyme (ACE) inhibitors, such as captopril, which emerged from the structural 

understanding of the enzyme’s zinc-binding site, and the ra�onal development of HIV-1 protease 

inhibitors, marking one of the first triumphs of SBDD in an�viral therapy [11]. Advances in force fields 
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and scoring algorithms, along with GPU-accelerated simula�ons, have further refined the accuracy of 

binding predic�ons, enabling virtual screening of millions of compounds against structural targets. 

Ligand-Based Drug Design (LBDD), in contrast, is employed when the 3D structure of the target 

is unknown or experimentally inaccessible. Instead, it leverages the known ac�vi�es of a series of 

ligands to infer the molecular features necessary for biological ac�vity. Techniques such as QSAR 

modelling, pharmacophore iden�fica�on, and similarity searching form the backbone of LBDD [12]. 

The QSAR paradigm correlates physicochemical proper�es with biological effects, while 

pharmacophore modelling iden�fies the spa�al arrangement of features hydrogen bond 

donors/acceptors, aroma�c rings, hydrophobic centres that underpin receptor binding. The success of 

β-adrenergic antagonists (β-blockers) and benzodiazepine deriva�ves illustrates the prac�cal power of 

ligand-based strategies before the advent of widespread structural data. While SBDD is grounded in 

physical models of molecular interac�ons, LBDD depends on sta�s�cal inference and paDern 

recogni�on. The boundary between the two has increasingly blurred, especially with the advent of 

hybrid and AI-driven methods. For instance, deep genera�ve models can integrate structural data and 

ligand ac�vity profiles to design novel compounds that sa�sfy both geometric and pharmacophoric 

constraints [13]. Furthermore, machine learning-assisted scoring func�ons now bridge the gap 

between physics-based and data-driven paradigms. 

In prac�ce, the choice between SBDD and LBDD depends on data availability, target type, and 

computa�onal resources. Structure-based approaches are favoured for well-characterized protein 

targets with known binding sites, while ligand-based methods are indispensable for orphan receptors 

or targets lacking resolved structures. Integra�ng both strategies where ligand-derived 

pharmacophoric insights inform docking constraints or where docking results enhance QSAR datasets 

represents a hallmark of modern CADD workflows. This hybridiza�on has proven par�cularly effec�ve 

in iden�fying allosteric modulators, covalent inhibitors, and mul�target ligands in complex disease 

networks. 

 

 1.3 Roles of Molecular Modelling, QSAR, Docking, Virtual Screening and AI in CADD 

The evolu�on of CADD is �ghtly linked to five core methodological pillars: molecular 

modelling, QSAR, molecular docking, virtual screening, and ar�ficial intelligence. Each represents a 

progressive layer in the computa�onal hierarchy, collec�vely driving the transi�on from descrip�ve 

chemistry to predic�ve pharmacology. Molecular modelling serves as the conceptual and prac�cal 

founda�on of CADD. It encompasses methods that visualize and simulate molecular structures to 

predict conforma�onal behaviour, energe�cs, and interac�ons. Early molecular mechanics models 

such as MM2 and AMBER enabled energy minimiza�on and conforma�onal sampling of small 

molecules. Molecular dynamics extended this to simulate biomolecular mo�on in explicit solvent 

environments, allowing dynamic insight into ligand binding and receptor flexibility [14]. With 

increasing computa�onal power, all-atom and coarse-grained simula�ons have become rou�ne, 

revealing the dynamic plas�city of ac�ve sites cri�cal for accurate docking and binding energy 

es�ma�on. 

QSAR represents the earliest form of computa�onal predic�ve modelling in drug discovery. 

Since the seminal Hansch analysis, QSAR has evolved into mul�dimensional paradigms (2D–6D QSAR) 

that encode topological, spa�al, electronic, and temporal molecular features. Methods such as Coma 

and CoMSIA introduced 3D fields to capture steric and electrosta�c influences, while advanced 

machine learning models random forests, support vector machines, and deep neural networks have 

enhanced predic�ve accuracy [15]. QSAR remains integral for ac�vity predic�on, ADMET profiling, and 
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virtual screening filtering, par�cularly when experimental data are limited. Molecular docking bridges 

the structural and energe�c dimensions of drug design. It predicts how ligands fit into target binding 

sites, es�ma�ng pose and binding affinity through scoring func�ons that combine empirical and 

physics-based terms. Docking so1ware such as Auto Dock, Glide, GOLD, and DOCK have become 

industry standards, rou�nely screening millions of compounds in silico before synthesis. Docking 

outputs are o1en refined through molecular dynamics simula�ons and free energy calcula�ons (MM–

GBSA, FEP) for higher accuracy [16]. 

Virtual screening (VS) integrates QSAR, docking, and pharmacophore modelling into large-

scale computa�onal searches of compound libraries. VS allows priori�za�on of candidate molecules 

based on predicted ac�vity, significantly reducing experimental screening costs. Structure-based 

virtual screening (SBVS) u�lizes docking against known targets, whereas ligand-based virtual screening 

(LBVS) exploits molecular similarity and pharmacophore matching. The incorpora�on of cloud 

compu�ng and distributed databases such as ZINC, Chambly, and Enamine REAL has expanded the 

accessible chemical space to billions of compounds, enabling global-scale hit discovery [17]. 

Finally, ar�ficial intelligence (AI) represents the newest and most transforma�ve layer in CADD. AI-

driven systems employ deep learning, graph neural networks, and reinforcement learning to predict 

drug–target interac�ons, generate novel scaffolds, and op�mize physicochemical proper�es. PlaYorms 

such as Depeche, Atom Net, and AlphaFold2 have demonstrated unprecedented accuracy in molecular 

property predic�on and protein structure determina�on [18]. Beyond predic�on, AI enables 

genera�ve design crea�ng en�rely new molecules with desired ac�vity and ADMET profiles. The 

integra�on of AI with molecular modelling and experimental feedback forms the founda�on of next-

genera�on autonomous drug discovery pipelines. 

Together, these components illustrate CADD’s evolu�on from descrip�ve modelling to 

predic�ve and genera�ve intelligence. Each methodological advance has incrementally expanded the 

scope of what can be ra�onally designed, bringing the pharmaceu�cal sciences closer to the long-

envisioned goal of fully in silico drug discovery. 

 

1.4 Socio-Economic Impact: Cost, Speed and Success Rates in Drug Discovery 

The incorpora�on of computer-aided drug design (CADD) into pharmaceu�cal pipelines has 

fundamentally reshaped the economic and temporal dimensions of drug discovery. Historically, the 

average cost of bringing a new drug to market has been es�mated between USD 1.5 and 2.5 billion, 

with �melines extending up to 12–15 years [19]. This burden is largely aDributed to high aDri�on rates 

where more than 90% of preclinical candidates fail during clinical development due to inadequate 

efficacy or unan�cipated toxicity. CADD mi�gates these inefficiencies by introducing predic�ve, 

hypothesis-driven workflows that minimize redundant synthesis and tes�ng. One of the most 

significant socio-economic benefits of CADD is its role in early-phase triage. Virtual screening and 

QSAR modelling enable the pre-selec�on of candidates with desirable physicochemical and 

pharmacokine�c profiles before laboratory synthesis. This computa�onal pre-filtering dras�cally 

reduces the number of compounds entering costly experimental pipelines, improving the hit-to-lead 

ra�o [20]. For example, large-scale virtual screening campaigns against SARS-CoV-2 main protease 

during the COVID-19 pandemic demonstrated how in silico modelling can iden�fy viable hit molecules 

within weeks an achievement that would have taken months using tradi�onal screening approaches 

[21]. 

Furthermore, structure-based approaches enhance lead op�miza�on by providing atomis�c 

insight into binding interac�ons. This precision facilitates ra�onal modifica�on of chemical scaffolds to 
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improve potency, selec�vity, and metabolic stability, thereby decreasing the number of synthesis 

itera�ons required. Pharmaceu�cal companies such as Pfizer, Merck, and Novar�s have reported 

significant reduc�ons in cycle �mes for target-to-lead programs using molecular docking and 

pharmacophore modelling tools integrated with AI-driven analy�cs [22]. CADD also contributes to cost 

reduc�on through repurposing and de-risking. Computa�onal repurposing strategies exploit exis�ng 

drugs’ structural and pharmacological data to iden�fy new therapeu�c indica�ons, offering a cost-

effec�ve alterna�ve to de novo discovery. The repurposing of thalidomide for mul�ple myeloma and 

sildenafil for pulmonary hypertension exemplifies the clinical and economic viability of such strategies 

[23]. AI-enhanced network pharmacology now enables iden�fica�on of mul�-target interac�ons, 

further extending the value of approved drugs across new indica�ons. 

From a broader socio-economic perspec�ve, the democra�za�on of computa�onal tools and 

open-access databases has made CADD accessible to academic ins�tu�ons and startups, 

decentralizing innova�on tradi�onally confined to major pharmaceu�cal companies. PlaYorms such 

as OpenMP, Depeche, and Swiss Dock empower resource-limited laboratories to conduct high-quality 

virtual experiments at minimal cost. Consequently, CADD not only accelerates innova�on but also 

fosters inclusivity and global collabora�on within the scien�fic community. In terms of measurable 

outcomes, analyses have shown that integra�ng CADD can reduce early discovery �melines by up 

to 30–50% and overall costs by approximately 20–40%, depending on target complexity and data 

availability [24]. Although these es�mates vary across therapeu�c domains, the consistent trend 

highlights computa�onal drug design as a key enabler of efficiency, reproducibility, and sustainability 

in modern pharmaceu�cal R&D. 

 

 1.5 Current Challenges: Chemical Space Explora�on, Data Integra�on and Biases 

Despite its transforma�ve poten�al, CADD faces persistent scien�fic and technical challenges. 

Chief among these are the vastness of chemical space, limita�ons in data quality and integra�on, and 

the propaga�on of algorithmic biases that influence model reliability. The chemical space 

problem arises from the nearly infinite number of theore�cally possible small molecules es�mated at 

over 10⁶⁰ compounds [25]. Even the largest virtual libraries, such as Enamine REAL or GDB-17, cover 

only an infinitesimal frac�on of this space. Sampling bias, restricted by exis�ng chemistries and 

available descriptors, o1en leads to a narrow explora�on of structural diversity. Although deep 

genera�ve models and reinforcement learning have expanded the ability to propose novel scaffolds, 

ensuring synthe�c feasibility and pharmacological relevance remains a major boDleneck [26]. Equally 

cri�cal are data integra�on challenges. The explosion of omics data genomics, transcriptomics, 

proteomics, and metabolomics offers unprecedented insights into biological complexity. However, the 

lack of standardized data formats, inconsistent annota�on, and incomplete metadata o1en hinder the 

crea�on of unified predic�ve models [27]. For example, integra�ng gene expression data with ligand-

binding affini�es demands sophis�cated normaliza�on and machine-learning techniques capable of 

handling high-dimensional, heterogeneous datasets. Efforts such as FAIR (Findable, Accessible, 

Interoperable, Reusable) data principles have aDempted to establish common standards, yet adop�on 

across the pharmaceu�cal ecosystem remains inconsistent. 

Algorithmic and dataset biases further complicate the reproducibility of computa�onal 

predic�ons. Machine learning models trained on skewed or under-representa�ve datasets can overfit 

to specific chemotypes or physicochemical paDerns, reducing their generalizability. A well-known 

example is the overrepresenta�on of hydrophobic ligands in public databases, which leads to an 

inflated predic�on of lipophilic binding preferences [28]. Similarly, structural redundancy in training 
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sets can produce ar�ficially high cross-valida�on metrics, masking poor real-world performance. 

Addressing these issues requires stringent cura�on protocols, external valida�on, and transparent 

repor�ng of dataset composi�on. Finally, the interpretability problem persists across deep learning 

applica�ons in CADD. Although AI models demonstrate remarkable predic�ve accuracy, their decision-

making processes o1en remain opaque a limita�on for regulatory valida�on and scien�fic acceptance. 

Emerging frameworks for explainable AI (XAI), including aDen�on visualiza�on and feature aDribu�on 

methods, are beginning to illuminate how molecular substructures influence predic�ons, thereby 

improving user trust [29]. Nonetheless, balancing model complexity with interpretability con�nues to 

be a delicate trade-off in next-genera�on drug design pipelines. 

 

1.6 Ethical, Regulatory and Open-Science Considera�ons 

As CADD systems increasingly influence real-world pharmaceu�cal decision-making, ethical 

and regulatory oversight becomes paramount. Computa�onal predic�ons if improperly validated can 

lead to resource misalloca�on or, in extreme cases, unsafe clinical outcomes. Hence, responsible data 

stewardship, transparency, and regulatory harmoniza�on are essen�al for sustaining public trust in AI-

augmented discovery frameworks. Ethically, the use of proprietary pa�ent-derived datasets and 

genomic informa�on raises ques�ons about data privacy, consent, and ownership. Adherence to 

interna�onal regula�ons such as the General Data Protec�on Regula�on (GDPR) and the Health 

Insurance Portability and Accountability Act (HIPAA) is cri�cal when integra�ng clinical or 

pharmacogenomic data into CADD workflows [30]. Federated learning and encrypted computa�on 

techniques have emerged as promising solu�ons, allowing collabora�ve model training without direct 

data exchange. 

From a regulatory standpoint, agencies like the U.S. Food and Drug Administra�on (FDA) and 

the European Medicines Agency (EMA) have begun formalizing guidelines for in silico model valida�on. 

The FDA’s “Model-Informed Drug Development” (MIDD) ini�a�ve emphasizes the use of 

computa�onal models to support dose selec�on, risk assessment, and biomarker qualifica�on. These 

frameworks demand transparency in algorithm design, version control, and documenta�on of training 

datasets [31]. Similarly, the Organiza�on for Economic Co-opera�on and Development (OECD) has 

proposed valida�on principles for (Q)SAR models, emphasizing reproducibility, defined applicability 

domains, and mechanis�c interpretability [32]. The open-science movement has further catalysed 

ethical and methodological progress in CADD. Open-access repositories such as Chambly, PubChem, 

and the PDB democra�ze access to structural and ac�vity data, while collabora�ve projects like Folding 

home and COVID Moonshot illustrate the power of community-driven discovery. However, open 

models must balance transparency with data integrity ensuring that democra�za�on does not 

compromise reliability or intellectual property rights. 

An emerging dimension of ethical considera�on involves the environmental sustainability of 

computa�on. High-performance simula�ons and deep learning models consume substan�al energy, 

contribu�ng to carbon emissions. Efforts toward green compu�ng through energy-efficient hardware, 

op�mized algorithms, and cloud-based workload distribu�on reflect an evolving awareness of 

sustainability in digital pharmaceu�cal science [33]. Ul�mately, ethical governance in CADD extends 

beyond compliance to encompass fairness, inclusivity, and reproducibility. As AI and automa�on 

con�nue to dominate discovery pipelines, embedding ethical reflexivity within algorithm design, 

valida�on, and dissemina�on will determine whether CADD fulfils its promise of socially responsible 

scien�fic advancement. 
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Table 1. Representative Structural Databases and Their Key Features 

Database Type Data Contents Typical 

Applications 

Access/Source 

Protein 

Data Bank 

(PDB) 

Protein 

structures 

3D atomic 

coordinates, 

ligands 

Structure-

based drug 

design, 

docking 

https://www.rcsb.org 

ChEMBL Bioactivity 

data 

Ligand activity, 

target binding 

data 

QSAR 

modeling, 

screening 

https://www.ebi.ac.uk/chembl 

PubChem Small 

molecules 

Chemical 

structures, 

properties, 

assays 

Virtual 

screening, 

similarity 

search 

https://pubchem.ncbi.nlm.nih.gov 

BindingDB Binding 

affinities 

Kd, Ki, IC50 

values 

Affinity 

modeling, 

benchmarking 

https://www.bindingdb.org 

DrugBank Approved 

and 

experimental 

drugs 

Structures, 

pharmacology, 

ADMET 

Drug 

repurposing, 

target analysis 

https://go.drugbank.com 

ZINC15 Virtual 

compound 

libraries 

Ready-to-dock 

molecules 

Structure-

based virtual 

screening 

https://zinc15.docking.org 

 

 
 

Figure 1. Hierarchical Framework of Data Founda�ons in Computer-Aided Drug Design 

 

 1.7 Chapter Summary and Structure of the Book 
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The historical trajectory of computer-aided drug design illustrates a transi�on from empiricism 

to ra�onality, from structure elucida�on to predic�ve modelling, and from isolated experimenta�on 

to integrated computa�onal ecosystems. Beginning with the early QSAR models of the 1960s, CADD 

evolved through decades of interdisciplinary convergence merging chemical intui�on with structural 

biology and computa�onal mathema�cs. This evolu�on enabled not only the visualiza�on of 

molecular interac�ons but also their quan�ta�ve predic�on across diverse biological contexts. Today, 

CADD represents a comprehensive framework encompassing molecular modelling, QSAR, docking, 

pharmacophore mapping, molecular dynamics, virtual screening, and AI-driven genera�ve design. 

Each methodology contributes a unique layer of understanding, collec�vely enabling accelerated and 

cost-effec�ve drug discovery. Yet, persistent challenges including the explora�on of uncharted 

chemical space, biases in data-driven models, and ethical implica�ons of AI decision-making highlight 

the need for con�nuous refinement and cri�cal oversight. 

 

1.8 CONCLUSION 

The conclusion will summarize how data integrity, standardiza�on, and interoperability 

underpin the en�re field of computer-aided drug design (CADD). It will emphasize the con�nuum from 

raw structural data (e.g., Protein Data Bank, PubChem, ChEMBL) to derived representa�ons (molecular 

descriptors, fingerprints, 3D conformers) and finally to computa�onal models (QSAR, docking, 

molecular dynamics). The sec�on will highlight that the accuracy of any in silico predic�on is only as 

reliable as the quality of its underlying data.  I t will also address emerging transforma�ons AI-ready 

datasets, FAIR-compliant repositories, and automated data cura�on pipelines that now drive 

reproducibility and scalability in computa�onal discovery. The conclusion will close by asser�ng that 

data-centric thinking is no longer peripheral but central to modern drug design, serving as the bridge 

that links computa�onal innova�on with experimental valida�on and transla�onal pharmacology. 
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