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Abstract: Quan2ta2ve Structure Ac2vity Rela2onship (QSAR) modeling stands at the core of ra2onal 

drug design, providing an essen2al framework for linking molecular structure to biological ac2vity 

through quan2fiable physicochemical descriptors. These descriptors translate chemical intui2on into 

mathema2cal form, capturing steric, electronic, topological, and thermodynamic proper2es that 

define molecular behavior. As computa2onal chemistry evolved, descriptor-based modeling expanded 

beyond one-dimensional (1D) linear rela2onships into higher-dimensional (2D–6D) representa2ons 

that account for molecular geometry, conforma2onal dynamics, and receptor flexibility. This chapter 

explores the theore2cal and computa2onal principles governing descriptor genera2on, categoriza2on, 

and selec2on, as well as their integra2on into mul2dimensional QSAR models. It reviews the 

methodological progression from classical 1D-QSAR models, such as Hansch analysis and Free–Wilson 

approaches, to advanced 3D and 4D frameworks like CoMFA, CoMSIA, and grid-based conforma2onal 

averaging. Furthermore, it examines how emerging 5D and 6D QSAR paradigms incorporate receptor 

adapta2on and environmental fluctua2ons to enhance predic2ve accuracy. The chapter concludes by 

discussing descriptor computa2on tools (Dragon, PaDEL, MOE, RDKit, KNIME), valida2on strategies, 

and the convergence of descriptor science with machine learning and quantum mechanics, 

emphasizing reproducibility and interpretability in predic2ve modeling. 
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1.0 INTRODUCTION  

Physicochemical Descriptors in CADD 

Physicochemical descriptors form the quan2ta2ve founda2on of computer-aided drug design 

(CADD), represen2ng a bridge between chemical structure and biological response. In essence, 

descriptors are numerical values derived from molecular structures that encapsulate informa2on 

about proper2es such as size, shape, charge distribu2on, polarity, and lipophilicity. By correla2ng these 

computed values with experimentally observed biological ac2vi2es, QSAR models provide an empirical 

yet mechanis2cally interpretable framework for predic2ng the ac2vity of untested compounds. 

Historically, the field traces its origin to the pioneering works of Hansch and Fujita in the 1960s, who 

demonstrated that biological ac2vity could be expressed as a mathema2cal func2on of 

physicochemical proper2es like par22on coefficient (logP) and electronic constants (σ) [1]. These early 

models, though limited to linear rela2onships, laid the conceptual founda2on for modern descriptor-

driven computa2onal modeling. In the contemporary era of CADD, descriptors are not merely 

computa2onal conveniences they are molecular abstrac2ons that define the informa2onal granularity 

of a QSAR model. Whether derived from simple atomic counts or complex quantum mechanical 

calcula2ons, descriptors encode how molecular features govern pharmacokine2c and 

pharmacodynamic outcomes. The evolu2on from 1D to 6D QSAR mirrors the growing recogni2on that 

drug ac2vity depends on not just sta2c molecular proper2es but dynamic interac2ons with biological 

macromolecules. This mul2dimensional expansion has been driven by advances in molecular 

modeling, cheminforma2cs, and data science, enabling the systema2c explora2on of vast chemical 

spaces while maintaining biological relevance. 

The interplay between descriptors and biological ac2vity has become increasingly 

sophis2cated as molecular databases (such as ChEMBL, PubChem, and ZINC) provide millions of 

annotated compounds. These data-rich environments necessitate robust descriptor calcula2on 

pipelines and feature selec2on algorithms capable of iden2fying the most relevant molecular 

a�ributes. Consequently, physicochemical descriptors serve not only as the input to predic2ve models 

but also as interpretable markers of molecular mechanism, aiding medicinal chemists in hypothesis-

driven design and lead op2miza2on [2]. As discussed in this chapter, understanding how these 

descriptors are generated, classified, and applied in mul2dimensional contexts is essen2al for 

achieving predic2ve, reproducible, and mechanis2cally interpretable QSAR models. 

 

1.1 Molecular Representa�on: From Chemical Structure to Numerical Features 

A molecule’s biological ac2vity arises from its atomic composi2on, three-dimensional 

conforma2on, and electronic environment. Transla2ng these complex features into numerical form is 

a central task of chemoinforma2cs. Molecular representa2ons serve as the interface between 

structural data and computa2onal modeling. They begin with the simplest one-dimensional (1D) 

nota2ons, such as SMILES (Simplified Molecular Input Line Entry System) and InChI iden2fiers, and 

extend to mul2dimensional arrays capturing atomic coordinates, charge densi2es, or energy maps. 

These representa2ons are the star2ng point for descriptor computa2on. where SS represents the 

molecular structure, and ff is the transforma2on func2on encoding structural features into numerical 

values [3]. Depending on the descriptor’s nature, ff may compute atom-based proper2es (e.g., number 

of hydrogen bond donors), molecular graph invariants (e.g., Wiener index, Balaban index), or quantum 

chemical parameters (e.g., HOMO–LUMO gap, dipole moment). These descriptors collec2vely create 

a “molecular fingerprint” that uniquely characterizes a compound in a mul2dimensional feature space. 
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In modern CADD workflows, descriptor genera2on typically begins with structure 

preprocessing using soTware such as RDKit, MOE, or Open Babel, which standardize valence states, 

remove counterions, and op2mize geometry. Subsequent descriptor computa2on tools like Dragon or 

PaDEL generate thousands of features that encompass physicochemical, topological, geometrical, and 

electronic dimensions. While these features increase model richness, they also introduce redundancy 

and collinearity, requiring feature selec2on techniques such as principal component analysis (PCA), 

recursive feature elimina2on (RFE), or gene2c algorithms (GA) [4]. The transi2on from molecular 

structure to mathema2cal representa2on thus transforms chemistry into data science, enabling 

machine learning algorithms to capture the quan2ta2ve essence of drug–receptor interac2ons. 

 

1.2 Classifica�on of Molecular Descriptors: Cons�tu�onal, Topological, Geometrical, Electronic, and 

Thermodynamic 

The classifica2on of molecular descriptors provides a systema2c framework for understanding 

how structural informa2on translates into quan2fiable a�ributes relevant to drug ac2vity. Although 

thousands of descriptors exist, they can be broadly categorized into five principal 

groups: cons2tu2onal, topological, geometrical, electronic, and thermodynamic [5]. Each class 

captures a different aspect of molecular behavior and contributes dis2nc2vely to QSAR model 

interpretability. Cons2tu2onal descriptors represent the simplest form, quan2fying fundamental 

molecular features such as atom counts, molecular weight, or number of hydrogen bond 

donors/acceptors. They provide baseline informa2on about chemical composi2on and are commonly 

used in early-stage filtering, such as in Lipinski’s rule of five or Veber’s rules [6]. Topological 

descriptors abstract molecular structure as a graph, where atoms are ver2ces and bonds are edges. 

Indices like the Wiener number, Kier–Hall connec2vity indices, and Balaban’s J index capture molecular 

branching and connec2vity pa�erns, which oTen correlate with molecular transport and binding 

proper2es [7]. Geometrical descriptors incorporate three-dimensional (3D) informa2on, including 

molecular volume, surface area, and shape indices derived from spa2al coordinates. These descriptors 

are vital in modeling steric effects influencing receptor fit and selec2vity [8]. 

Electronic descriptors quan2fy charge distribu2on and orbital proper2es, oTen obtained from 

quantum chemical calcula2ons using methods such as density func2onal theory (DFT). Examples 

include dipole moment, polarizability, ioniza2on poten2al, and HOMO–LUMO energy gap all cri2cal 

for understanding electrosta2c and charge transfer interac2ons during ligand binding [9]. 

Thermodynamic descriptors reflect molecular reac2vity and stability through proper2es such as Gibbs 

free energy, enthalpy, or solva2on energy. These parameters provide insight into binding energe2cs 

and conforma2onal equilibria, bridging the gap between structural features and bioac2vity [10]. 

Collec2vely, these descriptor categories form the mul2dimensional basis of QSAR modeling. By 

integra2ng mul2ple descriptor types, models achieve a more holis2c representa2on of molecular 

behavior, enabling accurate predic2on of diverse biological endpoints such as enzyme inhibi2on, 

receptor affinity, and membrane permeability. 

 

1.3 Theore�cal Basis of Descriptor Calcula�on and Its Role in QSAR Modeling 

Descriptor calcula2on is rooted in theore2cal chemistry, graph theory, and sta2s2cal 

mechanics. Each descriptor encodes a measurable or computable aspect of molecular structure based 

on physical laws or mathema2cal abstrac2on. For example, topological indices arise from graph 

invariants, while electronic descriptors stem from solu2ons to the Schrödinger equa2on. The 

underlying principle of descriptor theory is the structure–property rela2onship (SPR), which asserts 
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that molecules with similar structures will exhibit similar proper2es. where AA denotes the biological 

ac2vity and D1…DnD1…Dn are the computed descriptors. The func2on ff may be linear (e.g., mul2ple 

linear regression) or nonlinear (e.g., support vector machines, neural networks) depending on data 

complexity [11]. Physicochemical descriptors thus serve as the explanatory variables linking chemical 

structure to observed ac2vity. 

Descriptor computa2on involves either empirical correla2ons or ab ini2o calcula2ons. 

Empirical descriptors such as logP or polar surface area (PSA) are oTen derived from experimental data 

or addi2ve fragment contribu2ons. In contrast, quantum mechanical descriptors require electronic 

structure calcula2ons using semi-empirical (AM1, PM7) or DFT methods to es2mate molecular 

orbitals, electron density, and electrosta2c poten2als [12]. Geometrical descriptors typically arise from 

op2mized 3D structures generated by molecular mechanics force fields (MMFF94, OPLS4) or 

conforma2onal sampling via Monte Carlo or molecular dynamics simula2ons. Importantly, descriptor 

reliability depends on structural accuracy, standardiza2on of molecular orienta2on, and reproducibility 

of computa2onal condi2ons. For instance, descriptors derived from mul2ple conforma2ons must be 

averaged or weighted based on Boltzmann popula2ons to capture realis2c behavior in biological 

environments. As the dimensionality of QSAR increases (from 3D to 6D), descriptor computa2on 

incorporates dynamic and environmental effects, reflec2ng molecular flexibility and receptor 

adapta2on key elements for modern predic2ve pharmacology [13]. 

 

1.4 Descriptor Selec�on and Redundancy Elimina�on: Sta�s�cal and Machine Learning Approaches 

A cri2cal step in descriptor-based QSAR modeling is the iden2fica2on of relevant variables 

from a poten2ally massive feature space. Modern descriptor-genera2on tools can calculate over 5,000 

features per molecule, leading to redundancy, mul2collinearity, and overfiXng if all are used 

indiscriminately. Therefore, feature selec2on is vital to enhance model interpretability, predic2ve 

performance, and computa2onal efficiency [14]. Classical sta2s2cal approaches, such as stepwise 

regression, variance infla2on factor (VIF) analysis, and principal component analysis (PCA), help detect 

and eliminate correlated descriptors. PCA, for instance, transforms correlated variables into 

orthogonal principal components, preserving variance while reducing dimensionality. Par2al least 

squares (PLS) regression further iden2fies latent variables that maximize covariance between 

descriptor space and biological ac2vity [15]. 

Machine learning approaches have revolu2onized descriptor selec2on by introducing 

nonlinear, data-driven techniques. Recursive feature elimina2on (RFE) with support vector machines 

(SVMs), gene2c algorithms (GAs), random forest (RF) importance ranking, and mutual informa2on 

(MI)-based filtering are widely applied to iden2fy the most informa2ve descriptors [16]. Hybrid 

methods combining sta2s2cal and AI techniques have shown superior robustness, par2cularly when 

dealing with noisy or high-dimensional datasets. Descriptor interpretability remains a cri2cal 

considera2on. While AI-driven selec2on may yield high predic2ve accuracy, excessive automa2on can 

obscure mechanis2c insight. Therefore, the best prac2ce involves a balanced approach: using 

automated selec2on to reduce dimensionality while valida2ng selected descriptors against known 

physicochemical principles. SoTware like QSARINS, KNIME, and Orange3 facilitate this process by 

integra2ng feature selec2on, visualiza2on, and sta2s2cal valida2on modules within a unified workflow 

[17]. 
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 1.5 One-Dimensional QSAR (1D-QSAR): Linear Rela�onships between Physicochemical Proper�es 

and Ac�vity 

One-dimensional QSAR represents the founda2onal stage of quan2ta2ve modeling, describing 

biological ac2vity as a direct func2on of simple physicochemical parameters. These models rely 

primarily on scalar descriptors such as par22on coefficients, pKa values, molar refrac2vity, and 

subs2tuent constants. The classic Hansch equa2on, introduced in the 1960s, mathema2cally captured 

these rela2onships by correla2ng biological ac2vity with lipophilicity (logP), electronic effects (σ), and 

steric parameters (Es) [18]. The general form of the Hansch equa2on is expressed as: 

log (1/C)=alog P+b(log P)2+cσ+dEs+klog(1/C)=alogP+b(logP)2+cσ+dEs+k 

where CC represents the concentra2on required to elicit a biological response, and the 

coefficients a,b,c,a,b,c, and dd denote the rela2ve contribu2ons of each physicochemical property. 

The quadra2c term accounts for parabolic rela2onships between lipophilicity and biological ac2vity, 

acknowledging that both excessive hydrophobicity and hydrophilicity can reduce drug efficacy. 1D-

QSAR models are oTen linear, enabling straigh[orward interpreta2on and mechanis2c insight. They 

are par2cularly useful for series of congeneric compounds sharing a common scaffold but differing in 

subs2tuent pa�erns. The Free–Wilson approach complements Hansch analysis by directly associa2ng 

structural fragments with ac2vity changes, thereby quan2fying the addi2ve effects of subs2tuent 

modifica2ons [19]. Despite their simplicity, 1D-QSAR models remain relevant for rapid screening and 

for guiding early lead op2miza2on where limited structural diversity exists. Their main advantage lies 

in interpretability and low computa2onal cost. However, limita2ons arise from their inability to 

account for conforma2onal flexibility, receptor interac2ons, or three-dimensional shape effects. As the 

complexity of drug–target systems increased, 1D-QSAR gradually evolved into higher-dimensional 

frameworks incorpora2ng spa2al, electronic, and dynamic parameters to capture more realis2c 

molecular behavior [20]. 

 

 1.6 Two-Dimensional QSAR (2D-QSAR): Topological and Fragment-Based Representa�ons 

Two-dimensional QSAR extends the classical 1D approach by incorpora2ng informa2on 

derived from molecular connec2vity and graph theory. Molecules are treated as mathema2cal graphs, 

allowing the calcula2on of topological indices that describe connec2vity, branching, and cyclicity 

pa�erns. Common 2D descriptors include the Wiener index (path length), Balaban’s J index, Kier–Hall 

connec2vity indices, and molecular fingerprints such as ECFP and MACCS keys [21]. In 2D-QSAR, 

structural varia2ons are encoded without explicit three-dimensional coordinates, relying instead on 

rela2onal informa2on among atoms. These topological descriptors are robust to conforma2onal 

changes and provide a compact way to represent large chemical libraries. Moreover, fragment-based 

methods iden2fy substructures func2onal groups or pharmacophores associated with par2cular 

biological responses, thereby linking chemical mo2fs to ac2vity trends [22]. 

A typical 2D-QSAR workflow involves genera2ng a molecular graph, calcula2ng topological 

descriptors using tools like PaDEL, Dragon, or RDKit, and correla2ng them with biological ac2vity 

through sta2s2cal or machine learning algorithms such as mul2ple linear regression (MLR), par2al 

least squares (PLS), support vector machines (SVM), or random forests (RF). Feature selec2on methods 

help to iden2fy the most relevant topological pa�erns contribu2ng to biological potency [23]. While 

2D-QSAR captures structure–ac2vity rela2onships across chemically diverse datasets, it does not 

explicitly consider molecular geometry or conforma2onal preferences. Nevertheless, its 

computa2onal efficiency and interpretability make it indispensable in chemoinforma2cs pipelines for 

virtual screening, scaffold hopping, and preliminary hit priori2za2on. Notably, several successful drug 
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discovery campaigns, including β-blockers and ACE inhibitors, were informed by 2D-QSAR models that 

accurately predicted ac2vity trends within related compound series [24]. 

 

1.7 Three-Dimensional QSAR (3D-QSAR): Molecular Fields and Spa�al Descriptors (CoMFA, CoMSIA) 

The introduc2on of three-dimensional QSAR represented a paradigm shiT by incorpora2ng 

molecular shape and electrosta2c fields into predic2ve modeling. In 3D-QSAR, molecular alignment 

and spa2al field mapping form the basis of correla2ng three-dimensional descriptors with biological 

ac2vity. The two most influen2al methodologies in this domain are Compara2ve Molecular Field 

Analysis (CoMFA) and Compara2ve Molecular Similarity Indices Analysis (CoMSIA) [25]. In CoMFA, 

molecules are superimposed based on a common structural framework, and interac2on energies 

(steric and electrosta2c) are computed at grid points surrounding each molecule using a probe atom. 

These energy values form a field matrix that captures how molecular features interact with 

hypothe2cal receptor environments. The resul2ng dataset is analyzed using par2al least squares (PLS) 

regression to iden2fy spa2al regions where varia2ons in molecular fields correlate with biological 

ac2vity [26]. 

CoMSIA extends this concept by employing Gaussian distance-dependent func2ons and 

incorpora2ng addi2onal similarity indices hydrophobic, hydrogen bond donor, and acceptor fields. This 

method overcomes CoMFA’s sensi2vity to grid placement and alignment by providing smoother 

poten2al surfaces and improved interpretability [27]. 3D-QSAR models are powerful in 

elucida2ng structure ac2vity maps, offering medicinal chemists visual feedback on which molecular 

regions enhance or diminish ac2vity. The resul2ng contour maps serve as design blueprints for 

modifying subs2tuents to op2mize potency or selec2vity. However, the reliability of 3D-QSAR depends 

cri2cally on accurate molecular alignment and conforma2onal representa2on. Misalignment or 

incorrect conformer selec2on can lead to spurious correla2ons. To mi2gate these issues, ensemble-

based or alignment-independent variants have been developed, bridging toward the higher-

dimensional QSAR paradigms discussed in subsequent sec2ons [28]. 

 

1.8 Four-Dimensional QSAR (4D-QSAR): Conforma�onal Ensembles and Grid-Based Averaging 

Four-dimensional QSAR (4D-QSAR) introduces an addi2onal layer of realism by incorpora2ng 

molecular dynamics and conforma2onal diversity into predic2ve modeling. While 3D-QSAR assumes a 

single sta2c conforma2on for each ligand, 4D-QSAR acknowledges that molecules exist as ensembles 

of conforma2ons in solu2on or at the receptor site. This dynamic representa2on allows the model to 

average interac2on fields across conforma2onal space, reflec2ng thermally accessible geometries 

[29]. The core principle of 4D-QSAR lies in the concept of grid cell occupancy descriptors (GCODs). A 

set of conforma2ons for each ligand is generated typically via molecular dynamics (MD) or Monte Carlo 

simula2ons and superimposed in a 3D grid represen2ng the interac2on field. The frequency with 

which atoms occupy specific grid cells forms the descriptor matrix, effec2vely encoding conforma2onal 

flexibility [30]. Machine learning models, oTen based on PLS or neural networks, are then trained to 

correlate these occupancy pa�erns with biological ac2vity. 

One of the pioneering implementa2ons of this methodology was developed by Hopfinger and 

colleagues, who demonstrated that averaging molecular interac2on energies across conforma2ons 

improved predic2ve accuracy for flexible ligands. Modern 4D-QSAR workflows automate this process 

using soTware like Quasar, GQSAR, or integrated MD–QSAR pipelines in MOE or Schrödinger 

Maestro [31]. The inclusion of dynamic conforma2onal behavior makes 4D-QSAR par2cularly useful 

for ligands with mul2ple bioac2ve states or flexible linkers. However, this added realism comes with 
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increased computa2onal cost and the need for careful sampling of relevant conforma2ons. Despite 

these challenges, 4D-QSAR represents a cri2cal advance toward modeling ligand–receptor interac2ons 

under biologically realis2c condi2ons, serving as a conceptual bridge to 5D and 6D QSAR 

methodologies [32]. 

 

1.9 Five-Dimensional and Six-Dimensional QSAR: Receptor Flexibility and Dynamic Environmental 

Effects 

The evolu2on of QSAR into five and six dimensions reflects ongoing efforts to 

incorporate receptor adaptability, solvent effects, and environmental dynamics into predic2ve 

modeling. Whereas 4D-QSAR considers ligand conforma2ons, 5D-QSAR further accounts for mul2ple 

receptor conforma2ons (e.g., induced fit effects), while 6D-QSAR integrates environmental 

parameters such as solva2on, temperature, or ionic strength, providing the most comprehensive 

representa2on currently feasible in computa2onal frameworks [33]. In 5D-QSAR, the receptor is no 

longer treated as rigid. Mul2ple receptor conforma2ons, obtained from experimental structures, 

homology models, or molecular dynamics simula2ons, are included to represent flexible binding 

environments. For each ligand–receptor combina2on, descriptors such as interac2on energies, 

hydrogen bonding pa�erns, or contact surface areas are computed and sta2s2cally analyzed. The 

ensemble averaging over both ligand and receptor conforma2ons enables the model to capture 

induced-fit phenomena, which are crucial for accurately predic2ng binding affini2es in dynamic 

systems [34]. 

6D-QSAR further extends this by introducing environmental descriptors parameters that 

quan2fy the effects of solvent interac2ons, dielectric constant, and temperature on molecular 

behavior. For example, free energy of solva2on or hydra2on shell density can be incorporated into the 

model as an addi2onal descriptor layer. Advanced computa2onal techniques like implicit solvent 

models (Poisson–Boltzmann, Generalized Born) or explicit solvent molecular dynamics are commonly 

employed to generate these data [35]. These mul2dimensional QSAR approaches bridge the gap 

between sta2c molecular modeling and full-scale molecular simula2ons. They enable a holis2c view 

of drug–receptor interac2ons by integra2ng structural, dynamic, and environmental variables. 

The computa2onal frameworks suppor2ng such models include advanced pla[orms like Schrödinger’s 

FEP+, BioVia Discovery Studio’s 6D-QSAR modules, and customized machine learning pipelines that 

combine QSAR descriptors with MD-derived energe2cs. The predic2ve performance of these models, 

while computa2onally intensive, has been shown to outperform tradi2onal QSAR approaches for 

flexible targets such as GPCRs, kinases, and proteases [36]. 

However, 5D and 6D-QSAR face inherent challenges high dimensionality, limited 

interpretability, and the need for large training datasets. As computa2onal resources and AI-driven 

dimensionality reduc2on improve, these barriers are gradually being overcome. The integra2on of 

deep learning and hybrid simula2on–QSAR frameworks marks a new fron2er where mul2dimensional 

models achieve both predic2ve accuracy and mechanis2c transparency. 

The transi2on from 1D to 6D QSAR represents an evolu2on from simple linear rela2onships to 

highly complex, dynamic, and mul2dimensional models. Each QSAR dimension introduces addi2onal 

layers of structural and environmental informa2on, improving predic2ve power but also increasing 

computa2onal demands and interpretability challenges. A compara2ve understanding of these models 

highlights how advancements in descriptor theory and computa2onal capabili2es have expanded the 

scope of structure ac2vity correla2on in drug design. 1D-QSAR models remain favored for their 

simplicity and interpretability. They are highly effec2ve in cases where molecular varia2on is limited 
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and biological ac2vity correlates with scalar physicochemical parameters such as lipophilicity or 

electronic effects. These models are computa2onally inexpensive and suitable for early drug discovery 

screening but lack the capacity to account for three-dimensional or dynamic effects [37]. 

2D-QSAR models provide a richer structural context by encoding atomic connec2vity, 

branching, and fragment distribu2ons. They excel in virtual screening and scaffold-based drug 

discovery where topology is a key determinant of ac2vity. The use of topological indices and molecular 

fingerprints allows for rapid high-throughput analysis across diverse datasets. However, they s2ll treat 

molecules as sta2c en22es and cannot capture conforma2onal preferences or spa2al interac2ons [38]. 

3D-QSAR methodologies like CoMFA and CoMSIA revolu2onized the field by linking spa2al fields to 

biological ac2vity. They provide visual contour maps illustra2ng steric and electrosta2c contribu2ons 

to potency. These models are highly informa2ve for structure-guided op2miza2on, enabling chemists 

to pinpoint regions favorable for subs2tuent modifica2on. Yet, their dependence on molecular 

alignment and single-conforma2on representa2on introduces uncertainty, especially for flexible 

ligands [39]. 

4D-QSAR and higher models address these issues by integra2ng molecular flexibility and 

conforma2onal ensembles. 4D-QSAR accounts for the thermally accessible conforma2ons of ligands, 

whereas 5D-QSAR introduces receptor flexibility, and 6D-QSAR integrates environmental and solvent 

parameters. Collec2vely, these models simulate a dynamic biochemical reality, closely approxima2ng 

the complexity of ligand–receptor interac2ons. Their predic2ve accuracy is generally higher than 

lower-dimensional models, though this comes at the cost of interpretability and computa2onal 

intensity [40]. From a prac2cal standpoint, model selec2on depends on the balance between accuracy, 

interpretability, and computa2onal feasibility. While higher-dimensional QSARs are theore2cally 

superior, their advantages manifest only when high-quality structural and ac2vity data are available. 

Conversely, 1D and 2D models remain invaluable in early discovery phases or when data scarcity limits 

model generaliza2on. Modern CADD workflows oTen integrate mul2ple QSAR dimensions using 2D-

QSAR for large-scale screening and higher-dimensional models for refined lead op2miza2on [41]. 

 

1.11 SoAware PlaBorms and Computa�onal Workflows for Descriptor Genera�on and 

Mul�dimensional QSAR 

The prac2cal implementa2on of QSAR modeling relies heavily on computa2onal pla[orms that 

facilitate descriptor calcula2on, data preprocessing, model building, and valida2on. These tools range 

from specialized descriptor generators to integrated modeling environments and machine learning 

frameworks. Each plays a cri2cal role in transforming molecular data into predic2ve models. 

 

Descriptor Genera�on Tools 

 Dragon (by Kode Chemoinforma2cs) computes over 5,000 molecular descriptors across 0D–

3D categories, including cons2tu2onal, topological, geometrical, and electronic types. It is widely used 

in both academic and industrial QSAR pipelines [42]. 

 PaDEL-Descriptor provides an open-source alterna2ve capable of calcula2ng over 1,400 

descriptors and fingerprints. It integrates seamlessly with KNIME and Python-based workflows for 

high-throughput analysis [43]. 

 RDKit, a Python chemoinforma2cs library, allows customized descriptor computa2on, 

molecular fingerprints (e.g., ECFP, MACCS), and 3D structure handling within machine learning 

pipelines. 
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 MOE (Chemical Compu2ng Group) and Discovery Studio (Dassault Systèmes) combine 

descriptor genera2on with molecular modeling, docking, and pharmacophore tools, enabling holis2c 

CADD workflows. 

Modeling and Workflow Integra�on Tools: 

 QSARINS, developed by the University of Insubria, is tailored for linear regression-based QSAR 

modeling and adheres to OECD principles for model valida2on and interpretability. 

 KNIME offers a modular workflow pla[orm for integra2ng descriptor computa2on, feature 

selec2on, and machine learning. Nodes for RDKit, Weka, and Python enable flexible QSAR pipeline 

design. 

 DeepChem and TensorFlow provide deep learning frameworks for construc2ng nonlinear 

QSAR and molecular representa2on models using graph neural networks (GNNs) or convolu2onal 

neural networks (CNNs). 

 Schrödinger Maestro, BIOVIA Pipeline Pilot, and Simca provide end-to-end suites for 

advanced mul2dimensional QSAR, 3D contour visualiza2on, and sta2s2cal valida2on. 

 

Workflow Overview 

The typical QSAR workflow involves the following steps: 

1. Data Collec�on and Cura�on: Extrac2on of chemical structures and biological ac2vi2es from 

databases such as ChEMBL or PubChem. 

2. Structure Op�miza�on: Energy minimiza2on and standardiza2on using tools like Open Babel or 

MOE. 

3. Descriptor Calcula�on: Genera2on of molecular descriptors via PaDEL, RDKit, or Dragon. 

4. Feature Selec�on: Redundancy elimina2on using PCA, GA, or random forest-based ranking. 

5. Model Building: Applica2on of sta2s2cal or ML algorithms (PLS, SVM, RF, ANN). 

6. Valida�on: Internal (cross-valida2on) and external (test-set) performance evalua2on. 

7. Interpreta�on and Visualiza�on: Mapping of important descriptors or 3D contour fields. 

The convergence of these soTware ecosystems ensures reproducibility, regulatory compliance, 

and interoperability between QSAR models and other CADD components such as docking and 

pharmacophore analysis [44]. 

  

1.12 Challenges, Valida�on, and Reproducibility in Descriptor-Based QSAR Modeling 

Despite their widespread applica2on, QSAR models face enduring challenges related to data 

quality, model overfiXng, reproducibility, and interpretability. Descriptor-based modeling is only as 

reliable as the data underpinning it. Poorly curated datasets, inconsistent biological assay condi2ons, 

or ambiguous endpoint defini2ons can produce misleading correla2ons [45]. Hence, rigorous data 

preprocessing and standardiza2on remain cri2cal prerequisites. Another major issue is descriptor 

redundancy and collinearity, where mul2ple descriptors encode similar informa2on. This inflates 

model complexity without enhancing predic2ve accuracy. Robust feature selec2on and dimensionality 

reduc2on are thus essen2al to mi2gate mul2collinearity effects. However, aggressive feature pruning 

risks discarding mechanis2cally relevant informa2on, highligh2ng the trade-off between simplicity and 

completeness. 

Valida2on is the cornerstone of trustworthy QSAR models. The OECD (Organisa2on for 

Economic Co-opera2on and Development) has established principles outlining the criteria for a valid 

QSAR model: (1) a defined endpoint, (2) an unambiguous algorithm, (3) a defined applicability domain, 

(4) appropriate measures of goodness-of-fit, robustness, and predic2vity, and (5) mechanis2c 



 
32 

interpreta2on if possible [46]. Sta2s2cal metrics such as R2R2, Q2Q2, root mean square error (RMSE), 

and external predic2ve Rpred2Rpred2 are rou2nely employed to assess model performance. 

Addi2onally, Y-randomiza2on tests and bootstrapping help confirm that observed correla2ons are not 

due to chance. Reproducibility challenges arise when descriptor calcula2on parameters, molecular 

alignments, or preprocessing steps are not standardized. Even subtle varia2ons in force field selec2on 

or geometry op2miza2on methods can yield different descriptor values. Consequently, documenta2on 

of computa2onal protocols, versioning of soTware tools, and adherence to FAIR (Findable, Accessible, 

Interoperable, Reproducible) principles are increasingly emphasized in QSAR research [47]. 

Interpretability also remains a concern in complex, nonlinear QSAR models. While deep 

learning algorithms may achieve excep2onal predic2ve performance, their “black-box” nature 

complicates mechanis2c understanding. To address this, explainable AI (XAI) techniques such as SHAP 

(SHapley Addi2ve exPlana2ons) and LIME (Local Interpretable Model-Agnos2c Explana2ons) are now 

being integrated into descriptor-based workflows to iden2fy which molecular features drive 

predic2ons [48]. Through these advances, the community strives toward QSAR models that are not 

only accurate but also transparent, reproducible, and regulatory-compliant. 

 

1.13 Applica�ons of Mul�dimensional QSAR in Modern Drug Discovery 

Mul2dimensional QSAR approaches have found applica2ons across nearly every stage of the drug 

discovery pipeline, from hit iden2fica2on to lead op2miza2on and toxicity predic2on. By combining 

descriptor-based modeling with experimental feedback, researchers can efficiently explore chemical 

space, priori2ze compounds, and elucidate mechanisms of ac2on. 

 

Hit Iden�fica�on and Virtual Screening 

QSAR models par2cularly 2D and 3D variants serve as virtual screening filters for large compound 

libraries. By ranking molecules based on predicted potency or ADMET proper2es, these models 

dras2cally reduce the number of candidates requiring experimental valida2on. For example, 3D-QSAR 

contour maps have been used to guide the design of new HIV protease inhibitors and tyrosine kinase 

blockers, highligh2ng steric and electrosta2c regions crucial for potency [49]. 

 

Lead Op�miza�on 

Mul2dimensional QSAR supports itera2ve structure refinement. 4D-QSAR models incorpora2ng 

conforma2onal sampling have successfully predicted binding affini2es for flexible ligands, such as 

GPCR agonists and enzyme inhibitors, enabling targeted structural modifica2ons. 5D-QSAR approaches 

incorpora2ng receptor flexibility have improved selec2vity modeling in kinase inhibitor design, where 

induced-fit effects are prevalent [50]. 

 

Toxicity and ADMET Predic�on 

 Descriptor-based QSAR models remain indispensable in predic2ng absorp2on, distribu2on, 

metabolism, excre2on, and toxicity (ADMET) profiles. Machine learning-enhanced 2D and 3D-QSAR 

frameworks accurately forecast hepatotoxicity, cardiotoxicity, and blood–brain barrier permeability, 

reducing late-stage a�ri2on. Regulatory agencies such as the U.S. Environmental Protec2on Agency 

(EPA) and European Chemicals Agency (ECHA) increasingly accept validated QSAR models as in silico 

alterna2ves to animal tes2ng under the REACH ini2a2ve [51]. 
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Polypharmacology and Off-Target Predic�on 

Mul2dimensional QSAR enables the explora2on of mul2-target interac2ons by integra2ng 

descriptors reflec2ve of ligand flexibility and receptor conforma2onal diversity. 5D- and 6D-QSAR 

frameworks have been par2cularly effec2ve in mapping cross-reac2vity pa�erns across kinase families 

and GPCR subtypes, suppor2ng the ra2onal design of safer and more selec2ve drugs [52]. 

 

Drug Repurposing 

Large-scale QSAR models trained on mul2-target bioac2vity data have facilitated drug repurposing 

ini2a2ves, iden2fying unexpected therapeu2c poten2als for exis2ng drugs. Integra2on with deep 

learning and network pharmacology further enhances these predic2ve capabili2es, highligh2ng 

QSAR’s growing role in transla2onal bioinforma2cs [53]. Through these diverse applica2ons, 

mul2dimensional QSAR con2nues to evolve as a central analy2cal pillar of modern computer-aided 

drug design, complemen2ng experimental and AI-driven methodologies. 

 

1.14 Future Perspec�ves: Integra�ng AI, Quantum Mechanics, and Mul�-Omics into Descriptor 

Science 

The future of descriptor-based QSAR lies at the intersec2on of ar2ficial intelligence, quantum 

chemistry, and systems-level biology. As computa2onal power and data availability expand, descriptor 

science is transi2oning from handcraTed numerical features to learned representa2ons derived from 

neural networks and quantum mechanical simula2ons. 

 

AI and Deep Learning Integra�on 

Graph neural networks (GNNs) and message-passing neural architectures now learn molecular 

features directly from atomic graphs, bypassing manual descriptor calcula2on. These data-driven 

representa2ons capture intricate structure ac2vity rela2onships and generalize across diverse 

chemical classes. Hybrid QSAR models that combine classical descriptors with AI-derived embeddings 

exhibit improved predic2ve performance and interpretability [54]. 

 

Quantum Mechanically Derived Descriptors 

Advances in quantum computa2on and density func2onal theory are enabling high-precision 

electronic descriptors, such as fron2er orbital distribu2ons, polarizability tensors, and reac2on field 

energies. These descriptors enrich QSAR models with fundamental physical informa2on, linking 

molecular reac2vity to biological func2on. Quantum machine learning (QML) approaches are 

emerging as a bridge between ab ini2o calcula2ons and sta2s2cal modeling, offering sub-chemical-

accuracy predic2ons for complex systems [55]. 

 

Table 3.1. Compara�ve Characteris�cs of 1D–6D QSAR Models 

QSAR 

Dimensi

on 

Key 

Descriptor 

Type 

Structural 

Representa�

on 

Flexibility 

Consider

ed 

Computa�o

nal Demand 

Major 

Applica�o

ns 

Principal 

Limita�ons 

1D-QSAR Scalar 
physicochemi
cal proper2es 
(logP, σ, MR, 
pKa) 

Molecular 
constants 
and 
subs2tuent 
parameters 

None Low Early SAR 
analysis, 
preliminar
y lead 
iden2fica2
on 

Oversimplifi
ed; neglects 
3D structure 
and receptor 
interac2on 
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2D-QSAR Topological, 
connec2vity, 
and 
fragment-
based indices 

Atom–bond 
graph 
representa2
on 

Implicit 
(fixed 
topology) 

Low–

Moderate 
Virtual 
screening, 
scaffold 
hopping, 
molecular 
similarity 
analysis 

Ignores 3D 
orienta2on 
and 
conforma2o
nal dynamics 

3D-QSAR Spa2al field-
based 
descriptors 
(steric, 
electrosta2c, 
hydrophobic 
fields) 

Superimpose
d molecular 
conforma2o
ns in 3D grid 

Limited 
(single 
conforme
r) 

Moderate Structure-
guided 
ligand 
op2miza2o
n, 
visualiza2o
n of SAR 
maps 

Alignment 
dependence; 
sensi2ve to 
conformer 
choice 

4D-QSAR Grid cell 
occupancy 
descriptors 
(GCODs), 
averaged 
field maps 

Ensemble of 
conforma2o
ns 
represen2ng 
molecular 
dynamics 

Explicit 
ligand 
flexibility 

High Flexible 
ligand 
modeling, 
dynamic 
SAR 
predic2on 

High 
computa2on
al cost; 
requires 
extensive 
sampling 

5D-QSAR Receptor–
ligand 
ensemble 
interac2on 
descriptors 

Mul2ple 
receptor 
conforma2o
ns (induced-
fit 
representa2
on) 

Explicit 
receptor 
and 
ligand 
flexibility 

Very High Induced-fit 
modeling, 
allosteric 
site 
explora2o
n 

Requires 
accurate 
receptor 
data and 
dynamic 
binding 
models 

6D-QSAR Environmenta
l and solvent-
related 
descriptors 
(dielectric 
constant, 
solva2on 
energy) 

     

 

 

Figure 3.1. Evolu�on of Mul�dimensional QSAR Models from 1D to 6D 
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Mul�-Omics and Systems-Level Integra�on 

Next-genera2on QSAR frameworks are expanding beyond molecular-level descriptors to 

integrate genomic, proteomic, metabolomic, and transcriptomic data. This convergence, 

termed systems-QSAR, captures the biological context of drug ac2on, enabling predic2ons of not only 

potency but also 2ssue specificity and pa2ent response. Such integra2ve modeling aligns with the 

paradigm of precision medicine, where chemical and biological descriptors co-evolve within shared 

computa2onal ecosystems [56]. 

 

Cloud and High-Performance Compu�ng (HPC) 

The increasing dimensionality of QSAR models demands scalable computa2onal 

infrastructure. Cloud-based CADD pla[orms and GPU-accelerated workflows now support real-2me 

descriptor genera2on and model retraining, fostering reproducibility and collabora2ve development. 

Ul2mately, the integra2on of AI-driven feature learning, quantum mechanical precision, and systems-

level biological context will redefine QSAR as a mul2dimensional science capable of bridging chemical 

theory and transla2onal pharmacology. This evolu2on will not replace classical descriptor 

methodologies but rather amplify them, crea2ng a con2nuum from interpretable empirical models to 

self-learning predic2ve systems a vision that embodies the next fron2er of computer-aided drug 

design. 

 

CONCLUSION 

The systema2c evolu2on of physicochemical descriptors and mul2dimensional QSAR 

modeling represents a cornerstone of modern computer-aided drug design. Beginning with the early 

one-dimensional models of Hansch and Fujita, where biological ac2vity was correlated with simple 

parameters such as lipophilicity and electronic constants, QSAR has transformed into a 

mul2dimensional, data-rich discipline capable of simula2ng complex biochemical interac2ons. 

Through the progressive incorpora2on of topological, spa2al, conforma2onal, receptor, and 

environmental dimensions, the predic2ve scope of QSAR has expanded from sta2c rela2onships to 

dynamic, mechanis2cally interpretable frameworks. 

The conceptual journey from 1D to 6D QSAR demonstrates how chemical and biological 

realism can be systema2cally embedded into mathema2cal models. 1D and 2D approaches remain 

invaluable for their interpretability and computa2onal simplicity, forming the backbone of early-stage 

screening and regulatory risk assessment. Conversely, 3D to 6D QSAR models leverage advanced 

descriptors, conforma2onal ensembles, and receptor flexibility to approximate the dynamic nature of 

molecular recogni2on processes, thus improving predic2ve accuracy in lead op2miza2on and 

selec2vity profiling. 

The integra2on of descriptor science with ar2ficial intelligence, quantum chemistry, and mul2-

omics data heralds a new era of intelligent QSAR, where models evolve from empirical correla2ons to 

knowledge-driven systems capable of autonomous learning and mechanis2c reasoning. Despite these 

advances, challenges persist in data quality, model interpretability, and reproducibility. Adherence to 

OECD valida2on principles, the adop2on of FAIR data standards, and the incorpora2on of explainable 

AI will be cri2cal in ensuring the reliability and ethical deployment of QSAR technologies in drug 

discovery. 

Ul2mately, physicochemical descriptors remain the quan2ta2ve language through which 

chemical structures communicate their biological intent. Their con2nued evolu2on driven by 

theore2cal innova2on, computa2onal power, and interdisciplinary collabora2on will sustain QSAR’s 
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role as both a predic2ve science and a transla2onal bridge between molecular design and 

pharmacological reality. In the broader context of computa2onal drug design, mul2dimensional QSAR 

stands not merely as a modeling tool but as a conceptual framework that unifies chemistry, biology, 

and ar2ficial intelligence in the pursuit of precision therapeu2cs. 
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