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Abstract: Quan)ta)ve Structure Ac)vity Rela)onship (QSAR) modelling has long served as a 

cornerstone of computer-aided drug design, linking molecular descriptors to biological ac)vity through 

sta)s)cal and mathema)cal frameworks. This chapter explores the evolu)on, theory, and prac)ce of 

classical QSAR, emphasizing its role in correla)ng physicochemical and topological parameters with 

pharmacological responses and ADMET (absorp)on, distribu)on, metabolism, excre)on, and toxicity) 

profiles. Beginning with Hansch and Free Wilson models, the discussion extends through regression-

based and mul)variate methods, focusing on descriptor selec)on, model building, and valida)on 

strategies. Special a�en)on is given to sta)s)cal models such as mul)ple linear regression (MLR), 

par)al least squares (PLS), and principal component analysis (PCA), along with their integra)on into 

predic)ve ADMET modeling. Case studies demonstrate successful QSAR applica)ons in enzyme 

inhibi)on, receptor binding, and toxicology screening. The chapter concludes by examining challenges 

such as overfiBng, descriptor redundancy, and interpretability, while projec)ng how hybrid sta)s)cal 

and machine-learning approaches can enhance predic)ve reliability and mechanis)c insight. By 

integra)ng historical rigor with modern computa)onal paradigms, this chapter provides a 

methodological bridge between early QSAR frameworks and advanced AI-driven drug discovery. 
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4.0 INTRODUCTION  

The concept of Quan)ta)ve Structure Ac)vity Rela)onship (QSAR) originated from the 

fundamental observa)on that molecular structure governs biological ac)vity. This principle, 

ar)culated by Corwin Hansch in the early 1960s, catalyzed a paradigm shiG from qualita)ve medicinal 

chemistry intui)on to quan)ta)ve predic)on of bioac)vity through mathema)cal models. The Hansch 

analysis, which related hydrophobicity (logP), electronic, and steric parameters to biological potency, 

represented the first systema)c a�empt to encode chemical intui)on into regression-based equa)ons 

capable of predic)ng pharmacological response. The Free–Wilson model, emerging shortly thereaGer, 

expanded this framework by incorpora)ng indicator variables represen)ng subs)tuent presence or 

absence at defined molecular posi)ons, allowing addi)ve contribu)ons of func)onal groups to be 

quan)fied. Classical QSAR models served as a founda)on for understanding ligand–receptor 

interac)ons before the advent of high-resolu)on crystallography and computa)onal docking. In the 

absence of detailed structural data, medicinal chemists used QSAR-derived equa)ons to ra)onalize 

why structural analogues exhibited varia)ons in potency or selec)vity. The earliest models focused on 

simple physicochemical proper)es such as lipophilicity, ioniza)on constants (pKa), molar refrac)vity, 

and steric bulk, reflec)ng the available experimental data of the era. These descriptors, though 

rudimentary by modern standards, captured key features influencing membrane permeability, 

receptor binding, and metabolic stability. 

The historical progression of QSAR mirrors the evolu)on of sta)s)cal methodologies and 

computa)onal capabili)es. Early models were limited to linear correla)ons due to computa)onal 

constraints, but subsequent decades witnessed the incorpora)on of mul)variate regression, pa�ern 

recogni)on, and dimensionality reduc)on techniques. The 1980s saw the rise of Par)al Least Squares 

(PLS) regression and Principal Component Analysis (PCA), which allowed researchers to manage 

correlated descriptors and interpret latent variable contribu)ons to ac)vity. By the early 2000s, QSAR 

had become integral to regulatory submissions and toxicity screening under programs such as REACH 

and OECD guidelines, underscoring its con)nued relevance in preclinical decision-making. Classical 

QSAR thus represents both a methodological and philosophical bridge anchored in empirical data yet 

driven by the aspira)on to model biological complexity. Despite the advent of machine learning and 

deep neural networks, the interpretability, transparency, and mechanis)c alignment of classical 

sta)s)cal models con)nue to offer irreplaceable value in ra)onal drug design and ADMET evalua)on. 

 

4.1 Theore�cal Founda�ons of Classical QSAR 

At its core, QSAR operates under the assump)on that molecular proper)es can be 

mathema)cally correlated with biological ac)vity. The general func)onal form of a QSAR model can 

be expressed as: 

Ac�vity=f(Descriptors)=f(X1,X2,...,Xn)Ac�vity=f(Descriptors)=f(X1,X2,...,Xn) 

where XiXi represents a molecular descriptor (e.g., hydrophobic constant, Hamme� σ, TaG 

steric parameter), and Ac#vity denotes a measurable biological endpoint such as enzyme inhibi)on 

constant (Ki), half-maximal inhibitory concentra)on (IC50), or receptor binding affinity (pKi). Classical 

QSAR posits that biological response is a linear or nonlinear combina)on of structural features 

encoded numerically. The two founda)onal formula)ons Hansch Analysis and Free–Wilson Analysis 

employ dis)nct theore)cal perspec)ves. Hansch Analysis treats biological ac)vity as a con)nuous 

func)on of physicochemical parameters, yielding regression equa)ons of the form: 

log (1/C)=alog P+b(log P)2+cσ+dEs+klog(1/C)=alogP+b(logP)2+cσ+dEs+k 
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where CC represents concentra)on required for biological effect, log PlogP denotes 

lipophilicity, σσ is the Hamme� constant (electronic effect), and EsEs is the TaG steric parameter. The 

quadra)c term allows for the parabolic rela)onship oGen observed between lipophilicity and ac)vity 

reflec)ng an op)mal balance between membrane permeability and aqueous solubility. In contrast, 

the Free–Wilson Model assumes addi)vity of structural contribu)ons without explicitly invoking 

physicochemical parameters: 

Ac�vity=∑aiXi+kAc�vity=∑aiXi+k 

where XiXi are binary indicators of subs)tuent presence and aiai their corresponding 

contribu)ons to ac)vity. This approach allows medicinal chemists to infer the significance of specific 

subs)tuents but lacks mechanis)c depth regarding underlying physicochemical mechanisms. The 

conceptual fusion of these models led to mixed QSAR approaches, wherein both physicochemical and 

structural indicators were combined to capture synergis)c effects. Over )me, addi)onal theore)cal 

refinements emerged, such as the introduc)on of interac)on terms, normaliza)on of descriptors, and 

correc)on for collinearity, all of which improved the robustness of predic)ons. QSAR theory also 

incorporates the assump)on of similarity, namely that structurally similar molecules exhibit similar 

biological ac)vity. This assump)on underpins modern chemoinforma)cs methods such as nearest-

neighbor and cluster-based screening. However, it is important to note that the rela)onship between 

structure and ac)vity is not always monotonic ac)vity cliffs, tautomerism, and conforma)onal 

flexibility can disrupt linear correla)ons, emphasizing the need for careful descriptor selec)on and 

model valida)on. 

 

 4.2 Descriptor Selec�on and Sta�s�cal Parameteriza�on 

The predic)ve capacity of a QSAR model is inherently dependent on the choice of descriptors. 

Descriptors serve as mathema)cal representa)ons of molecular features that influence 

pharmacokine)c and pharmacodynamic behavior. Classical QSAR typically 

employs physicochemical, topological, and electronic descriptors derived from empirical 

measurements or quantum chemical calcula)ons. Commonly used physicochemical descriptors 

include hydrophobicity (logP), molecular weight, polar surface area (PSA), molar refrac)vity, and 

hydrogen bond donor/acceptor counts. Electronic descriptors such as dipole moment, HOMO–LUMO 

gap, and charge distribu)on reflect the electron-withdrawing or -dona)ng tendencies of subs)tuents. 

Steric descriptors (e.g., TaG’s EsEs, Verloop’s sterimol parameters) quan)fy three-dimensional volume 

and shape effects relevant to receptor binding. 

A central challenge in descriptor selec)on lies in balancing comprehensiveness with 

parsimony. Including too many descriptors can lead to overfiBng, where the model captures noise 

rather than true signal. Conversely, too few descriptors may yield an under-specified model incapable 

of generaliza)on. Sta)s)cal feature selec)on techniques such as stepwise regression, forward 

selec)on, backward elimina)on, and gene)c algorithms have historically been employed to iden)fy 

the most informa)ve subset of descriptors. To ensure interpretability and orthogonality, 

intercorrela)on matrices and variance infla)on factors (VIF) are oGen computed to eliminate 

redundant descriptors. The Hansch constant correla)on matrix, for instance, provides insights into 

descriptor dependencies. Addi)onally, Principal Component Analysis (PCA) is commonly used to 

transform correlated descriptors into orthogonal components, enabling the construc)on of simplified 

models that retain maximal variance. 

Modern computa)onal environments such as MOE, KNIME, and QSARINS facilitate descriptor 

calcula)on and selec)on workflows. QSARINS, in par)cular, provides built-in sta)s)cal valida)on (R², 
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Q², RMSE) and applicability domain visualiza)on, allowing researchers to iden)fy chemical space 

boundaries where predic)ons are reliable. 

 

4.3 Mul�ple Linear Regression (MLR) and Model Building 

Among classical sta)s)cal methods, Mul)ple Linear Regression (MLR) remains the most 

widely used for QSAR analysis due to its simplicity, interpretability, and analy)cal transparency. MLR 

assumes a linear rela)onship between dependent (biological ac)vity) and independent (descriptor) 

variables: 

Y=b0+b1X1+b2X2+...+bnXn+ϵY=b0+b1X1+b2X2+...+bnXn+ϵ 

where bibi are regression coefficients and ϵϵ represents random error. MLR coefficients 

convey both the direc)on and magnitude of descriptor contribu)ons to ac)vity posi)ve coefficients 

indicate direct correla)on, whereas nega)ve coefficients signify inverse rela)onships. 

A typical QSAR modeling workflow involves 

1. Dataset prepara)on and standardiza)on of ac)vity data (e.g., conver)ng IC50 to pIC50). 

2. Descriptor calcula)on and normaliza)on. 

3. Correla)on analysis to remove highly collinear variables. 

4. Model genera)on using least-squares fiBng. 

5. Valida)on using internal (cross-valida)on) and external (test set) procedures. 

Model adequacy is evaluated using metrics such as coefficient of determina)on (R²), cross-

validated coefficient (Q²), standard error of es)mate (SEE), and F-sta)s)c. Acceptable QSAR models 

typically exhibit R2>0.6R2>0.6 and Q2>0.5Q2>0.5, although these thresholds vary depending on 

dataset complexity. However, MLR assumes homoscedas)city, linearity, and independence of residuals 

condi)ons that may not hold for nonlinear biological phenomena. To address this, researchers oGen 

introduce polynomial or interac)on terms or employ data transforma)ons (e.g., logarithmic scaling) 

to linearize rela)onships. Residual analysis and outlier diagnos)cs (Cook’s distance, leverage plots) are 

essen)al for iden)fying compounds that dispropor)onately influence regression parameters. Despite 

its limita)ons, MLR’s strength lies in interpretability it enables mechanis)c hypotheses about how 

specific physicochemical proper)es influence biological ac)vity. For example, a posi)ve coefficient for 

logP may suggest enhanced receptor penetra)on with increasing hydrophobicity, while a nega)ve 

coefficient for molecular weight may reflect steric hindrance in ligand–target interac)on. 

 

4.4 Par�al Least Squares (PLS) and Principal Component Analysis (PCA) in QSAR 

The progression of QSAR from simple linear correla)ons to mul)variate analysis marked a 

major methodological advancement in computa)onal drug design. When descriptor intercorrela)on 

becomes significant, Par)al Least Squares (PLS) and Principal Component Analysis (PCA) offer robust 

sta)s)cal alterna)ves to tradi)onal MLR by projec)ng high-dimensional data into orthogonal latent 

variables that maximize covariance between descriptors and ac)vity. Principal Component Analysis 

(PCA) is an unsupervised dimensionality reduc)on technique used to summarize variance within 

descriptor matrices. In PCA, new orthogonal variables (principal components, PCs) are constructed as 

linear combina)ons of original descriptors such that the first few components capture the majority of 

variance. In QSAR, PCA facilitates data visualiza)on, cluster iden)fica)on, and the removal of 

redundant descriptors. Molecules projected onto a principal component space oGen reveal structure 

ac)vity trends, allowing chemists to discern which physicochemical a�ributes most influence potency. 

However, PCA alone does not incorporate biological ac)vity during component construc)on. This 

limita)on is overcome by Par)al Least Squares (PLS), a supervised method that finds latent variables 
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(LVs) maximizing covariance between descriptor (X) and response (Y) matrices. PLS is par)cularly 

powerful when descriptors are numerous and collinear condi)ons common in chemoinforma)cs 

datasets. In contrast to MLR, PLS allows more descriptors than compounds while s)ll preven)ng 

overfiBng through dimensionality reduc)on. The PLS algorithm itera)vely extracts components by 

projec)ng X and Y onto new axes that capture maximum covariance, op)mizing predic)ve 

performance. 

Mathema)cally, PLS can be represented as: 

X=TPT+EandY=UQT+FX=TPT+EandY=UQT+F 

where TT and UU are score matrices, PP and QQ are loadings, and EE, FF represent residuals. 

The rela)onship between TT and UU reflects the linear dependence between descriptor and ac)vity 

subspaces. PLS regression coefficients are then used to predict biological ac)vity for new compounds. 

PLS has become a cornerstone of 3D-QSAR methods such as CoMFA (Compara)ve Molecular Field 

Analysis) and CoMSIA (Compara)ve Molecular Similarity Indices Analysis), where thousands of field 

descriptors (steric, electrosta)c) are reduced to a manageable number of latent components. 

Valida)on metrics such as cross-validated Q², predic)ve R² (R²_pred), and root mean square error 

(RMSE) are used to assess performance. A well-calibrated PLS model typically displays Q² > 0.5 and low 

RMSE for external test sets. 

Both PCA and PLS allow graphical representa)on through score plots and loading plots, 

providing visual interpretability of chemical space. Score plots cluster compounds by ac)vity, while 

loading plots iden)fy descriptors or molecular regions responsible for differences. Consequently, PLS 

and PCA remain indispensable in classical QSAR, offering mechanis)c transparency and sta)s)cal rigor 

essen)al for regulatory acceptance. 

 

4.5 Valida�on of QSAR Models: Internal, External, and Applicability Domain 

Valida)on is the defining criterion separa)ng credible QSAR models from spurious 

correla)ons. The OECD principles for QSAR valida)on s)pulate five criteria: (1) defined endpoint, (2) 

unambiguous algorithm, (3) defined applicability domain (AD), (4) appropriate measures of goodness-

of-fit, robustness, and predic)vity, and (5) mechanis)c interpreta)on, if possible [1]. Each aspect 

ensures that the model is scien)fically sound, transparent, and reproducible. 

Internal valida)on assesses model robustness using subsets of the training data. Common techniques 

include: 

 Leave-One-Out (LOO) Cross-Valida)on, where each compound is sequen)ally omi�ed and 

predicted using the remaining dataset to compute Q²(LOO). 

 Leave-Many-Out (LMO) or k-Fold Cross-Valida)on, which improves reliability by averaging 

predic)ons over mul)ple par))ons. 

 Bootstrapping, where mul)ple random samples are drawn to evaluate coefficient stability. 

 

External valida)on evaluates model generaliza)on using an independent test set excluded 

from training. Predic)ve performance is quan)fied by external R² (R²_pred), RMSE_pred, and 

concordance correla)on coefficient (CCC). An ideal QSAR model exhibits both internal consistency 

(high Q²) and external predic)vity (high R²_pred) without significant discrepancy, indica)ng 

generalizable trends rather than overfiBng. The applicability domain (AD) defines the chemical space 

within which the model can make reliable predic)ons. Methods for AD es)ma)on include the leverage 

approach (Williams plot) and distance-based methods such as Euclidean or Mahalanobis distance. 

Compounds lying beyond the AD are considered extrapola)ons and require cau)on in interpreta)on. 
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QSARINS and KNIME implement AD visualiza)on tools enabling researchers to iden)fy safe predic)on 

boundaries. 

Sta)s)cal criteria are complemented by mechanis)c interpretability, ensuring that model 

coefficients align with known pharmacological principles. For example, a posi)ve correla)on between 

lipophilicity and ac)vity should be chemically reasonable for hydrophobic binding sites but not for 

aqueous transporters. Such mechanis)c congruence is crucial for confidence in QSAR-derived 

hypotheses. In toxicology and pharmacokine)cs, validated QSAR models are recognized by regulatory 

agencies including the European Chemicals Agency (ECHA) and the U.S. Environmental Protec)on 

Agency (EPA) for risk assessment under OECD guidelines. Consequently, rigorous valida)on not only 

ensures scien)fic credibility but also facilitates regulatory acceptance of in silico predic)ons as non-

animal alterna)ves in ADMET evalua)on. 

 

4.6 Integra�on of Classical QSAR with ADMET Predic�on 

While early QSAR studies focused primarily on pharmacodynamic endpoints such as receptor 

binding or enzyme inhibi)on, modern drug discovery requires simultaneous op)miza)on of 

pharmacokine)c and toxicological proper)es. The extension of QSAR principles to ADMET predic)on 

represents one of the most transforma)ve shiGs in computa)onal pharmacology. In Absorp)on, QSAR 

models correlate molecular descriptors with permeability data (e.g., Caco-2 cell permeability, PAMPA 

assays). Descriptors such as molecular weight, topological polar surface area (tPSA), and logP are 

crucial determinants of membrane transport. For instance, Lipinski’s Rule of Five parameters are 

empirically grounded in QSAR-derived correla)ons that delineate orally bioavailable compounds [2]. 

For Distribu)on, classical QSAR models predict plasma protein binding, blood–brain barrier (BBB) 

penetra)on, and volume of distribu)on (Vd). Correla)ons between logP, molecular volume, and 

polarizability oGen provide reliable BBB predic)ons. Notably, Hansch-type models have been used to 

dis)nguish CNS-ac)ve from peripherally restricted drugs based on lipophilicity thresholds. 

In Metabolism, QSAR has been applied to predict cytochrome P450 inhibi)on and metabolic stability. 

Electronic descriptors such as fron)er orbital energies (EHOMO, ELUMO) and Mulliken charges 

correlate with metabolic suscep)bility to oxida)on or hydrolysis. Linear regression and PLS models 

trained on experimental clearance data enable early iden)fica)on of metabolic liabili)es. 

Excre)on modeling relies on polar descriptors (e.g., hydrogen bond donors/acceptors) 

influencing renal filtra)on and biliary elimina)on. In Toxicity, classical QSAR remains central to the 

predic)on of mutagenicity (Ames test), carcinogenicity, and hepatotoxicity. Regulatory databases such 

as VEGA, admetSAR, and OECD QSAR Toolbox employ classical sta)s)cal models to es)mate 

toxicological endpoints based on curated descriptors.  An illustra)ve case involves predic)ng 

hepatotoxicity using PLS regression trained on hydrophobicity, molecular volume, and aroma)city 

indices. Compounds exhibi)ng high hydrophobic surface area and aroma)c density oGen show 

posi)ve regression coefficients correla)ng with hepatotoxic risk due to bioac)va)on and accumula)on 

mechanisms. Thus, classical QSAR provides the theore)cal underpinning for modern in silico ADMET 

filters serving as the first computa)onal checkpoint in early drug discovery pipelines. The 

interpretability of linear models allows medicinal chemists to ra)onally modify structures to improve 

pharmacokine)c profiles while retaining potency. 
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4.7 Case Studies Illustra�ng Classical QSAR Applica�ons 

4.7.1 β-Adrenergic Antagonists (Hansch Analysis) 

One of the earliest demonstra)ons of QSAR efficacy was the correla)on between lipophilicity 

and β-blocking ac)vity of aryloxypropanolamines. Hansch and Fujita established that biological ac)vity 

(log(1/C)) exhibited a parabolic rela)onship with logP, iden)fying an op)mal hydrophobicity window 

balancing receptor affinity and solubility [3]. The model guided synthesis of analogues with improved 

selec)vity and reduced side effects, exemplifying ra)onal drug op)miza)on. 

 

4.7.2 Benzodiazepine Deriva�ves (Free–Wilson Approach) 

The Free Wilson model successfully quan)fied subs)tuent contribu)ons to anxioly)c ac)vity 

in benzodiazepines. Binary indicator variables represen)ng electron-withdrawing or dona)ng 

subs)tuents at ortho-, meta-, and para-posi)ons allowed addi)ve modeling of potency. The model 

revealed key structural mo)fs essen)al for receptor binding and seda)ve proper)es, valida)ng the 

addi)ve assump)on in classical QSAR. 

 

4.7.3 Toxicity Predic�on in Aroma�c Amines 

QSAR models employing TaG steric constants and Hamme� σ parameters accurately predicted 

mutagenic poten)al in aroma)c amines. Regression analysis showed that electron-dona)ng 

subs)tuents enhanced mutagenicity via increased forma)on of electrophilic intermediates, aligning 

with mechanis)c biochemical evidence. Such interpretability remains a key advantage of classical 

QSAR over opaque AI models. 

 

4.7.4 ADMET Modeling of NSAIDs 

In an applied pharmacokine)c context, linear regression models correlated molecular size, 

logP, and hydrogen-bonding capacity with gastrointes)nal toxicity among nonsteroidal an)-

inflammatory drugs (NSAIDs). Higher lipophilicity and acidic pKa were associated with mucosal 

irrita)on, offering insights for designing safer analogues. This study demonstrated the transla)onal 

relevance of classical QSAR for risk minimiza)on. Collec)vely, these examples underscore the 

adaptability of classical QSAR principles across therapeu)c classes and mechanis)c domains from 

potency op)miza)on to safety profiling. 

 

4.8 Cri�cal Evalua�on: Strengths, Limita�ons, and Evolving Role 

The enduring relevance of classical QSAR arises from its balance between simplicity, 

interpretability, and computa)onal efficiency. Linear models provide explicit rela)onships between 

structure and func)on, enabling hypothesis-driven medicinal chemistry. They require minimal 

computa)onal resources and offer transparency necessary for regulatory compliance. Moreover, the 

sta)s)cal rigor of regression analysis provides quan)fiable uncertainty es)mates and confidence 

intervals, fostering reproducibility. However, limita)ons are inherent. The linear assump)on may 

oversimplify complex biological phenomena governed by nonlinear interac)ons, allosteric effects, and 

conforma)onal dynamics. Descriptor redundancy and mul)collinearity can distort coefficient 

es)ma)on, while small datasets risk overfiBng. Classical QSAR also assumes that biological ac)vity 

arises primarily from equilibrium interac)ons, neglec)ng kine)c or temporal dimensions of 

pharmacology. Another challenge involves the applicability domain: models trained on limited 

chemical space oGen fail to generalize to novel scaffolds. Addi)onally, classical QSAR lacks the ability 

to capture non-addi)ve effects and synergis)c interac)ons between molecular features. These 
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shortcomings have prompted the adop)on of nonlinear methods such as support vector machines, 

random forests, and neural networks discussed in later chapters. 

Nevertheless, classical QSAR con)nues to serve as an interpre)ve and regulatory benchmark. 

Its outputs are mechanis)cally interpretable, aligning with medicinal chemistry intui)on. In prac)ce, 

hybrid strategies combining linear descriptors with nonlinear learners oGen yield op)mal balance 

between accuracy and explainability. As computa)onal power expands and descriptor libraries grow 

richer, classical QSAR remains founda)onal not as an outdated relic but as a transparent scaffold upon 

which modern AI-based methods are built. Its sta)s)cal discipline, valida)on rigor, and interpre)ve 

clarity ensure that even in the age of deep learning, the principles of Hansch and Free Wilson endure 

at the core of ra)onal drug design. 

 

Table 4.1 Comparison of Classical Sta�s�cal Methods Used in QSAR Modelling 

Sta�s�cal 

Method 

Mathema�cal 

Basis 

Typical Applica�on 

in QSAR 

Advantages Limita�ons 

Simple Linear 

Regression 

(SLR) 

One-variable 

least-squares fit 

Early 

hydrophobicity–

ac)vity (Hansch) 

correla)ons 

Easy 

interpreta)on; 

minimal data need 

Ignores 

mul)variable 

interplay; poor 

generaliza)on 

Mul�ple 

Linear 

Regression 

(MLR) 

Mul)variate 

least-squares 

op)miza)on 

Structure–ac)vity 

correla)ons with 

physicochemical 

descriptors 

Quan)ta)ve 

coefficients; 

mechanis)c insight 

Sensi)ve to 

collinearity; 

assumes 

linearity 

Principal 

Component 

Analysis 

(PCA) 

Eigenvector 

decomposi)on of 

variance–

covariance matrix 

Data reduc)on and 

visualiza)on of 

descriptor space 

Iden)fies hidden 

trends; mi)gates 

redundancy 

Unsupervised; 

no direct ac)vity 

linkage 

Par�al Least 

Squares (PLS) 

Latent-variable 

projec)on 

maximizing X–Y 

covariance 

3D-QSAR 

(CoMFA/CoMSIA) 

and collinear 

datasets 

Handles > 

descriptors than 

samples; robust to 

mul)collinearity 

Requires 

interpreta)on of 

latent 

components 

Stepwise 

Regression / 

Gene�c 

Algorithms 

Itera)ve 

descriptor 

selec)on by 

sta)s)cal criteria 

Feature subset 

op)miza)on 

Automated; 

improves model 

simplicity 

Risk of 

overfiBng; 

dataset-

dependent 

Principal 

Component 

Regression 

(PCR) 

Regression on 

PCA components 

When descriptors 

are highly correlated 

Reduces 

dimensionality; 

computa)onally 

efficient 

Loss of direct 

descriptor 

meaning 

Ridge / Lasso 

Regression 

Penalized least 

squares (L2 / L1 

norms) 

Regulariza)on of 

QSAR models 

Controls 

overfiBng; 

improves stability 

Parameter 

tuning required; 

less intui)ve 

coefficients 

 

 

 



47 

 
 

Figure 1 Workflow of Classical QSAR Model Development 

 

4.9 Future Perspec�ves: Bridging Classical and AI-Driven QSAR 

The trajectory of QSAR methodology is increasingly convergent with ar)ficial intelligence, yet 

classical sta)s)cal founda)ons remain indispensable. Future research is expected to integrate hybrid 

models where MLR- or PLS-derived interpretable coefficients inform deep-learning architectures, 

preserving explainability while enhancing predic)ve performance. Transfer learning and mul)-task 

regression could extend classical QSAR principles to mul)target pharmacology, simultaneously 

op)mizing efficacy and ADMET endpoints. Emerging quantum chemical descriptors, topological 

indices from graph theory, and molecular interac)on fingerprints will expand descriptor diversity, 

allowing more comprehensive mapping of structure ac)vity landscapes. Coupling classical QSAR 

with molecular dynamics simula)ons can incorporate conforma)onal flexibility into regression 

models, bridging sta)c descriptors with dynamic behavior. 

In regulatory science, the movement toward transparent AI aligns with QSAR’s long-standing 

emphasis on interpretability. OECD-compliant hybrid models may soon become the standard for 

submission-ready computa)onal toxicology. As data availability increases through FAIR-compliant 

repositories, sta)s)cally grounded QSAR frameworks will play a central role in model reproducibility 

and open-science valida)on. Ul)mately, the integra)on of sta)s)cal QSAR, ADMET modeling, and AI 

represents not a replacement but an evolu)on of classical principles extending the quan)ta)ve bridge 

between molecular structure and pharmacological func)on toward a fully data-centric paradigm of 

predic)ve drug design. 

 

4.10 CONCLUSION 

Classical QSAR represents one of the most enduring and scien)fically grounded paradigms in 

computa)onal drug design. Origina)ng from the pioneering work of Hansch and Free Wilson, it 

established the quan)ta)ve link between molecular structure and biological ac)vity that remains 

central to modern pharmacological modeling. Through linear regression, mul)variate analysis, and 

rigorous sta)s)cal valida)on, classical QSAR models provide interpretable rela)onships that enable 

ra)onal op)miza)on of potency, selec)vity, and pharmacokine)c behavior.  

Despite the rapid evolu)on of ar)ficial intelligence and deep learning, classical QSAR endures 

as the conceptual and regulatory founda)on upon which modern predic)ve systems are built. Its 

advantages lie in transparency, simplicity, and mechanis)c clarity quali)es cri)cal for hypothesis 

genera)on and decision-making in medicinal chemistry. The con)nued relevance of mul)ple linear 

regression (MLR), par)al least squares (PLS), and principal component analysis (PCA) in ADMET 

predic)on demonstrates that sta)s)cally interpretable methods remain indispensable tools for 

understanding the molecular determinants of efficacy and safety. 

 



48 

REFERENCES 

1. OECD. Principles for the Valida)on, for Regulatory Purposes, of (Quan)ta)ve) Structure–Ac)vity 

Rela)onship Models. OECD Series on Tes)ng and Assessment No. 69. Paris: OECD; 2004. 

2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computa)onal approaches to 

es)mate solubility and permeability in drug discovery and development seBngs. Adv Drug Deliv 

Rev. 2012;64:4–17. 

3. Hansch C, Fujita T. p–σ–π Analysis. A method for the correla)on of biological ac)vity and 

chemical structure. J Am Chem Soc. 1964;86(8):1616–1626. 

4. Todeschini R, Consonni V. Handbook of Molecular Descriptors. Wiley-VCH; 2009. 

5. Grama)ca P. Principles of QSAR modeling: Valida)on, internal and external. QSAR Comb 

Sci. 2007;26(5):694–701. 

6. Roy K, Kar S, Das RN. A Primer on QSAR Modeling. Springer; 2015. 

7. Dearden JC. The history and development of quan)ta)ve structure–ac)vity rela)onships 

(QSARs). Int J Quant Struct-Prop Relat. 2019;4(1):1–44. 

8. Toropov AA, Benfena) E, Leszczynski J. QSAR modeling of drug-induced liver injury. Chem Res 

Toxicol. 2020;33(6):1489–1500. 

9. Eriksson L, Johansson E, Ke�aneh-Wold N, Wold S. Mul#- and Megavariate Data Analysis. MKS 

Umetrics; 2006. 

10. ECHA. QSAR Toolbox User Manual v4.6. European Chemicals Agency; 2023. 

11. Puzyn T, Leszczynska D, Leszczynski J. Toward the development of “intelligent” QSARs: Advances 

and challenges. Curr Comput Aided Drug Des. 2020;16(2):80–92. 

12. Veith GD et al. QSAR models for es)ma)ng plasma protein 

binding. Chemosphere. 2018;208:886–892. 

13. Honorio KM, da Silva ABF. Quan)ta)ve structure–ac)vity rela)onships for the modeling of drug 

metabolism. Curr Drug Metab. 2017;18(2):126–137. 

14. Tropsha A. Best prac)ces for QSAR model development, valida)on, and exploita)on. Mol 

Inform. 2022;41(6):2100131. 

15. Grama)ca P, Cassani S, Chirico N. QSARINS: A soGware for developing, valida)ng, and analyzing 

QSAR models. Chemom Intell Lab Syst. 2014;127:123–139. 

   


