Genome Publications
https://doi.org/10.61096/978-81-990998-7-6_4

Chapter 4

Classical QSAR and Statistical Models: Correlating Descriptors with Activity
and ADMET

Dr. Amareswarapu V Surendra
Assistant Professor, KL college of Pharmacy, Koneru Lakshmaiah Educational Foundation
Greenfields, Vaddeswaram, Guntur, Andhra Pradesh-Pin:522302

Dr. Sushma.N
Assistant Professor, KL college of Pharmacy, Koneru Lakshmaiah Educational Foundation
Greenfields, Vaddeswaram, Guntur, Andhra Pradesh-Pin:522302

Mandava Mahima Swaroopa
KL college of Pharmacy, Koneru Lakshmaiah Educational Foundation Greenfields,
Vaddeswaram, Guntur, Andhra Pradesh-Pin:522302

Abstract: Quantitative Structure Activity Relationship (QSAR) modelling has long served as a
cornerstone of computer-aided drug design, linking molecular descriptors to biological activity through
statistical and mathematical frameworks. This chapter explores the evolution, theory, and practice of
classical QSAR, emphasizing its role in correlating physicochemical and topological parameters with
pharmacological responses and ADMET (absorption, distribution, metabolism, excretion, and toxicity)
profiles. Beginning with Hansch and Free Wilson models, the discussion extends through regression-
based and multivariate methods, focusing on descriptor selection, model building, and validation
strategies. Special attention is given to statistical models such as multiple linear regression (MLR),
partial least squares (PLS), and principal component analysis (PCA), along with their integration into
predictive ADMET modeling. Case studies demonstrate successful QSAR applications in enzyme
inhibition, receptor binding, and toxicology screening. The chapter concludes by examining challenges
such as overfitting, descriptor redundancy, and interpretability, while projecting how hybrid statistical
and machine-learning approaches can enhance predictive reliability and mechanistic insight. By
integrating historical rigor with modern computational paradigms, this chapter provides a
methodological bridge between early QSAR frameworks and advanced Al-driven drug discovery.
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4.0 INTRODUCTION

The concept of Quantitative Structure Activity Relationship (QSAR) originated from the
fundamental observation that molecular structure governs biological activity. This principle,
articulated by Corwin Hansch in the early 1960s, catalyzed a paradigm shift from qualitative medicinal
chemistry intuition to quantitative prediction of bioactivity through mathematical models. The Hansch
analysis, which related hydrophobicity (logP), electronic, and steric parameters to biological potency,
represented the first systematic attempt to encode chemical intuition into regression-based equations
capable of predicting pharmacological response. The Free—Wilson model, emerging shortly thereafter,
expanded this framework by incorporating indicator variables representing substituent presence or
absence at defined molecular positions, allowing additive contributions of functional groups to be
quantified. Classical QSAR models served as a foundation for understanding ligand-receptor
interactions before the advent of high-resolution crystallography and computational docking. In the
absence of detailed structural data, medicinal chemists used QSAR-derived equations to rationalize
why structural analogues exhibited variations in potency or selectivity. The earliest models focused on
simple physicochemical properties such as lipophilicity, ionization constants (pKa), molar refractivity,
and steric bulk, reflecting the available experimental data of the era. These descriptors, though
rudimentary by modern standards, captured key features influencing membrane permeability,
receptor binding, and metabolic stability.

The historical progression of QSAR mirrors the evolution of statistical methodologies and
computational capabilities. Early models were limited to linear correlations due to computational
constraints, but subsequent decades witnessed the incorporation of multivariate regression, pattern
recognition, and dimensionality reduction techniques. The 1980s saw the rise of Partial Least Squares
(PLS) regression and Principal Component Analysis (PCA), which allowed researchers to manage
correlated descriptors and interpret latent variable contributions to activity. By the early 2000s, QSAR
had become integral to regulatory submissions and toxicity screening under programs such as REACH
and OECD guidelines, underscoring its continued relevance in preclinical decision-making. Classical
QSAR thus represents both a methodological and philosophical bridge anchored in empirical data yet
driven by the aspiration to model biological complexity. Despite the advent of machine learning and
deep neural networks, the interpretability, transparency, and mechanistic alignment of classical
statistical models continue to offer irreplaceable value in rational drug design and ADMET evaluation.

4.1 Theoretical Foundations of Classical QSAR

At its core, QSAR operates under the assumption that molecular properties can be
mathematically correlated with biological activity. The general functional form of a QSAR model can
be expressed as:

Activity=f(Descriptors)=f(X1,X2,...,Xn)Activity=f(Descriptors)=£(X1,X2,...,Xn)

where XiXi represents a molecular descriptor (e.g., hydrophobic constant, Hommett o, Taft
steric parameter), and Activity denotes a measurable biological endpoint such as enzyme inhibition
constant (Ki), half-maximal inhibitory concentration (IC50), or receptor binding affinity (pKi). Classical
QSAR posits that biological response is a linear or nonlinear combination of structural features
encoded numerically. The two foundational formulations Hansch Analysis and Free—Wilson Analysis
employ distinct theoretical perspectives. Hansch Analysis treats biological activity as a continuous
function of physicochemical parameters, yielding regression equations of the form:

log(1/C)=alogP+b(logP)2+co+dEs+klog(1/C)=alogP+b(logP)2+co+dEs+k
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where CC represents concentration required for biological effect, logPlogP denotes
lipophilicity, oo is the Hammett constant (electronic effect), and EsEs is the Taft steric parameter. The
guadratic term allows for the parabolic relationship often observed between lipophilicity and activity
reflecting an optimal balance between membrane permeability and aqueous solubility. In contrast,
the Free—Wilson Model assumes additivity of structural contributions without explicitly invoking
physicochemical parameters:

Activity=3 aiXi+kActivity=3 aiXi+k

where XiXi are binary indicators of substituent presence and aiagitheir corresponding
contributions to activity. This approach allows medicinal chemists to infer the significance of specific
substituents but lacks mechanistic depth regarding underlying physicochemical mechanisms. The
conceptual fusion of these models led to mixed QSAR approaches, wherein both physicochemical and
structural indicators were combined to capture synergistic effects. Over time, additional theoretical
refinements emerged, such as the introduction of interaction terms, normalization of descriptors, and
correction for collinearity, all of which improved the robustness of predictions. QSAR theory also
incorporates the assumption of similarity, namely that structurally similar molecules exhibit similar
biological activity. This assumption underpins modern chemoinformatics methods such as nearest-
neighbor and cluster-based screening. However, it is important to note that the relationship between
structure and activity is not always monotonic activity cliffs, tautomerism, and conformational
flexibility can disrupt linear correlations, emphasizing the need for careful descriptor selection and
model validation.

4.2 Descriptor Selection and Statistical Parameterization

The predictive capacity of a QSAR model is inherently dependent on the choice of descriptors.
Descriptors serve as mathematical representations of molecular features that influence
pharmacokinetic and pharmacodynamic behavior. Classical QSAR typically
employs physicochemical, topological,  and electronic descriptors  derived from  empirical
measurements or quantum chemical calculations. Commonly used physicochemical descriptors
include hydrophobicity (logP), molecular weight, polar surface area (PSA), molar refractivity, and
hydrogen bond donor/acceptor counts. Electronic descriptors such as dipole moment, HOMO-LUMO
gap, and charge distribution reflect the electron-withdrawing or -donating tendencies of substituents.
Steric descriptors (e.g., Taft’s EsEs, Verloop’s sterimol parameters) quantify three-dimensional volume
and shape effects relevant to receptor binding.

A central challenge in descriptor selection lies in balancing comprehensiveness with
parsimony. Including too many descriptors can lead to overfitting, where the model captures noise
rather than true signal. Conversely, too few descriptors may yield an under-specified model incapable
of generalization. Statistical feature selection techniques such as stepwise regression, forward
selection, backward elimination, and genetic algorithms have historically been employed to identify
the most informative subset of descriptors. To ensure interpretability and orthogonality,
intercorrelation matrices and variance inflation factors (VIF) are often computed to eliminate
redundant descriptors. The Hansch constant correlation matrix, for instance, provides insights into
descriptor dependencies. Additionally, Principal Component Analysis (PCA)is commonly used to
transform correlated descriptors into orthogonal components, enabling the construction of simplified
models that retain maximal variance.

Modern computational environments such as MOE, KNIME, and QSARINS facilitate descriptor
calculation and selection workflows. QSARINS, in particular, provides built-in statistical validation (R?,
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Q?, RMSE) and applicability domain visualization, allowing researchers to identify chemical space
boundaries where predictions are reliable.

4.3 Multiple Linear Regression (MLR) and Model Building

Among classical statistical methods, Multiple Linear Regression (MLR) remains the most
widely used for QSAR analysis due to its simplicity, interpretability, and analytical transparency. MLR
assumes a linear relationship between dependent (biological activity) and independent (descriptor)
variables:

Y=b0+b1X1+b2X2+...+bnXn+€Y=b0+b1X1+b2X2+...+bnXn+€

where bibi are regression coefficients and ee represents random error. MLR coefficients
convey both the direction and magnitude of descriptor contributions to activity positive coefficients
indicate direct correlation, whereas negative coefficients signify inverse relationships.
A typical QSAR modeling workflow involves

1. Dataset preparation and standardization of activity data (e.g., converting IC50 to pIC50).

Descriptor calculation and normalization.
Correlation analysis to remove highly collinear variables.
Model generation using least-squares fitting.

e W

Validation using internal (cross-validation) and external (test set) procedures.

Model adequacy is evaluated using metrics such as coefficient of determination (R?), cross-
validated coefficient (Q?), standard error of estimate (SEE), and F-statistic. Acceptable QSAR models
typically exhibit R2>0.6R2>0.6 and Q2>0.5Q2>0.5, although these thresholds vary depending on
dataset complexity. However, MLR assumes homoscedasticity, linearity, and independence of residuals
conditions that may not hold for nonlinear biological phenomena. To address this, researchers often
introduce polynomial or interaction terms or employ data transformations (e.g., logarithmic scaling)
to linearize relationships. Residual analysis and outlier diagnostics (Cook’s distance, leverage plots) are
essential for identifying compounds that disproportionately influence regression parameters. Despite
its limitations, MLR’s strength lies in interpretability it enables mechanistic hypotheses about how
specific physicochemical properties influence biological activity. For example, a positive coefficient for
logP may suggest enhanced receptor penetration with increasing hydrophobicity, while a negative
coefficient for molecular weight may reflect steric hindrance in ligand—target interaction.

4.4 Partial Least Squares (PLS) and Principal Component Analysis (PCA) in QSAR

The progression of QSAR from simple linear correlations to multivariate analysis marked a
major methodological advancement in computational drug design. When descriptor intercorrelation
becomes significant, Partial Least Squares (PLS) and Principal Component Analysis (PCA) offer robust
statistical alternatives to traditional MLR by projecting high-dimensional data into orthogonal latent
variables that maximize covariance between descriptors and activity. Principal Component Analysis
(PCA) is an unsupervised dimensionality reduction technique used to summarize variance within
descriptor matrices. In PCA, new orthogonal variables (principal components, PCs) are constructed as
linear combinations of original descriptors such that the first few components capture the majority of
variance. In QSAR, PCA facilitates data visualization, cluster identification, and the removal of
redundant descriptors. Molecules projected onto a principal component space often reveal structure
activity trends, allowing chemists to discern which physicochemical attributes most influence potency.
However, PCA alone does not incorporate biological activity during component construction. This
limitation is overcome by Partial Least Squares (PLS), a supervised method that finds latent variables
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(LVs) maximizing covariance between descriptor (X) and response (Y) matrices. PLS is particularly
powerful when descriptors are numerous and collinear conditions common in chemoinformatics
datasets. In contrast to MLR, PLS allows more descriptors than compounds while still preventing
overfitting through dimensionality reduction. The PLS algorithm iteratively extracts components by
projecting X and Y onto new axes that capture maximum covariance, optimizing predictive
performance.

Mathematically, PLS can be represented as:

X=TPT+EandY=UQT+FX=TPT+EandY=UQT+F

where TT and UU are score matrices, PP and QQ are loadings, and EE, FF represent residuals.
The relationship between TT and UU reflects the linear dependence between descriptor and activity
subspaces. PLS regression coefficients are then used to predict biological activity for new compounds.
PLS has become a cornerstone of 3D-QSAR methods such as CoMFA (Comparative Molecular Field
Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis), where thousands of field
descriptors (steric, electrostatic) are reduced to a manageable number of latent components.
Validation metrics such as cross-validated Q?, predictive R? (R?_pred), and root mean square error
(RMSE) are used to assess performance. A well-calibrated PLS model typically displays Q2> 0.5 and low
RMSE for external test sets.

Both PCA and PLS allow graphical representation through score plots and loading plots,
providing visual interpretability of chemical space. Score plots cluster compounds by activity, while
loading plots identify descriptors or molecular regions responsible for differences. Consequently, PLS
and PCA remain indispensable in classical QSAR, offering mechanistic transparency and statistical rigor
essential for regulatory acceptance.

4.5 Validation of QSAR Models: Internal, External, and Applicability Domain
Validation is the defining criterion separating credible QSAR models from spurious
correlations. The OECD principles for QSAR validation stipulate five criteria: (1) defined endpoint, (2)
unambiguous algorithm, (3) defined applicability domain (AD), (4) appropriate measures of goodness-
of-fit, robustness, and predictivity, and (5) mechanistic interpretation, if possible [1]. Each aspect
ensures that the model is scientifically sound, transparent, and reproducible.
Internal validation assesses model robustness using subsets of the training data. Common techniques
include:
e Leave-One-Out (LOO) Cross-Validation, where each compound is sequentially omitted and
predicted using the remaining dataset to compute Q*(LOO).
e Leave-Many-Out (LMO) or k-Fold Cross-Validation, which improves reliability by averaging
predictions over multiple partitions.
e Bootstrapping, where multiple random samples are drawn to evaluate coefficient stability.

External validation evaluates model generalization using an independent test set excluded
from training. Predictive performance is quantified by external R? (R?_pred), RMSE_pred, and
concordance correlation coefficient (CCC). An ideal QSAR model exhibits both internal consistency
(high Q%) and external predictivity (high R?_pred) without significant discrepancy, indicating
generalizable trends rather than overfitting. The applicability domain (AD) defines the chemical space
within which the model can make reliable predictions. Methods for AD estimation include the leverage
approach (Williams plot) and distance-based methods such as Euclidean or Mahalanobis distance.
Compounds lying beyond the AD are considered extrapolations and require caution in interpretation.

43



QSARINS and KNIME implement AD visualization tools enabling researchers to identify safe prediction
boundaries.

Statistical criteria are complemented by mechanistic interpretability, ensuring that model
coefficients align with known pharmacological principles. For example, a positive correlation between
lipophilicity and activity should be chemically reasonable for hydrophobic binding sites but not for
aqueous transporters. Such mechanistic congruence is crucial for confidence in QSAR-derived
hypotheses. In toxicology and pharmacokinetics, validated QSAR models are recognized by regulatory
agencies including the European Chemicals Agency (ECHA) and the U.S. Environmental Protection
Agency (EPA) for risk assessment under OECD guidelines. Consequently, rigorous validation not only
ensures scientific credibility but also facilitates regulatory acceptance of in silico predictions as non-
animal alternatives in ADMET evaluation.

4.6 Integration of Classical QSAR with ADMET Prediction

While early QSAR studies focused primarily on pharmacodynamic endpoints such as receptor
binding or enzyme inhibition, modern drug discovery requires simultaneous optimization of
pharmacokinetic and toxicological properties. The extension of QSAR principles to ADMET prediction
represents one of the most transformative shifts in computational pharmacology. In Absorption, QSAR
models correlate molecular descriptors with permeability data (e.g., Caco-2 cell permeability, PAMPA
assays). Descriptors such as molecular weight, topological polar surface area (tPSA), and logP are
crucial determinants of membrane transport. For instance, Lipinski’s Rule of Five parameters are
empirically grounded in QSAR-derived correlations that delineate orally bioavailable compounds [2].
For Distribution, classical QSAR models predict plasma protein binding, blood—brain barrier (BBB)
penetration, and volume of distribution (Vd). Correlations between logP, molecular volume, and
polarizability often provide reliable BBB predictions. Notably, Hansch-type models have been used to
distinguish CNS-active from peripherally restricted drugs based on lipophilicity thresholds.
In Metabolism, QSAR has been applied to predict cytochrome P450 inhibition and metabolic stability.
Electronic descriptors such as frontier orbital energies (EHOMO, ELUMO) and Mulliken charges
correlate with metabolic susceptibility to oxidation or hydrolysis. Linear regression and PLS models
trained on experimental clearance data enable early identification of metabolic liabilities.

Excretion modeling relies on polar descriptors (e.g., hydrogen bond donors/acceptors)
influencing renal filtration and biliary elimination. In Toxicity, classical QSAR remains central to the
prediction of mutagenicity (Ames test), carcinogenicity, and hepatotoxicity. Regulatory databases such
as VEGA, admetSAR, and OECD QSAR Toolbox employ classical statistical models to estimate
toxicological endpoints based on curated descriptors. An illustrative case involves predicting
hepatotoxicity using PLS regression trained on hydrophobicity, molecular volume, and aromaticity
indices. Compounds exhibiting high hydrophobic surface area and aromatic density often show
positive regression coefficients correlating with hepatotoxic risk due to bioactivation and accumulation
mechanisms. Thus, classical QSAR provides the theoretical underpinning for modern in silico ADMET
filters serving as the first computational checkpoint in early drug discovery pipelines. The
interpretability of linear models allows medicinal chemists to rationally modify structures to improve
pharmacokinetic profiles while retaining potency.
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4.7 Case Studies lllustrating Classical QSAR Applications
4.7.1 B-Adrenergic Antagonists (Hansch Analysis)

One of the earliest demonstrations of QSAR efficacy was the correlation between lipophilicity
and B-blocking activity of aryloxypropanolamines. Hansch and Fujita established that biological activity
(log(1/C)) exhibited a parabolic relationship with logP, identifying an optimal hydrophobicity window
balancing receptor affinity and solubility [3]. The model guided synthesis of analogues with improved
selectivity and reduced side effects, exemplifying rational drug optimization.

4.7.2 Benzodiazepine Derivatives (Free—~Wilson Approach)

The Free Wilson model successfully quantified substituent contributions to anxiolytic activity
in benzodiazepines. Binary indicator variables representing electron-withdrawing or donating
substituents at ortho-, meta-, and para-positions allowed additive modeling of potency. The model
revealed key structural motifs essential for receptor binding and sedative properties, validating the
additive assumption in classical QSAR.

4.7.3 Toxicity Prediction in Aromatic Amines

QSAR models employing Taft steric constants and Hammett o parameters accurately predicted
mutagenic potential in aromatic amines. Regression analysis showed that electron-donating
substituents enhanced mutagenicity via increased formation of electrophilic intermediates, aligning
with mechanistic biochemical evidence. Such interpretability remains a key advantage of classical
QSAR over opaque Al models.

4.7.4 ADMET Modeling of NSAIDs

In an applied pharmacokinetic context, linear regression models correlated molecular size,
logP, and hydrogen-bonding capacity with gastrointestinal toxicity among nonsteroidal anti-
inflammatory drugs (NSAIDs). Higher lipophilicity and acidic pKa were associated with mucosal
irritation, offering insights for designing safer analogues. This study demonstrated the translational
relevance of classical QSAR for risk minimization. Collectively, these examples underscore the
adaptability of classical QSAR principles across therapeutic classes and mechanistic domains from
potency optimization to safety profiling.

4.8 Critical Evaluation: Strengths, Limitations, and Evolving Role

The enduring relevance of classical QSAR arises from its balance between simplicity,
interpretability, and computational efficiency. Linear models provide explicit relationships between
structure and function, enabling hypothesis-driven medicinal chemistry. They require minimal
computational resources and offer transparency necessary for regulatory compliance. Moreover, the
statistical rigor of regression analysis provides quantifiable uncertainty estimates and confidence
intervals, fostering reproducibility. However, limitations are inherent. The linear assumption may
oversimplify complex biological phenomena governed by nonlinear interactions, allosteric effects, and
conformational dynamics. Descriptor redundancy and multicollinearity can distort coefficient
estimation, while small datasets risk overfitting. Classical QSAR also assumes that biological activity
arises primarily from equilibrium interactions, neglecting kinetic or temporal dimensions of
pharmacology. Another challenge involves the applicability domain: models trained on limited
chemical space often fail to generalize to novel scaffolds. Additionally, classical QSAR lacks the ability
to capture non-additive effects and synergistic interactions between molecular features. These
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shortcomings have prompted the adoption of nonlinear methods such as support vector machines,
random forests, and neural networks discussed in later chapters.

Nevertheless, classical QSAR continues to serve as an interpretive and regulatory benchmark.
Its outputs are mechanistically interpretable, aligning with medicinal chemistry intuition. In practice,
hybrid strategies combining linear descriptors with nonlinear learners often yield optimal balance
between accuracy and explainability. As computational power expands and descriptor libraries grow
richer, classical QSAR remains foundational not as an outdated relic but as a transparent scaffold upon
which modern Al-based methods are built. Its statistical discipline, validation rigor, and interpretive
clarity ensure that even in the age of deep learning, the principles of Hansch and Free Wilson endure
at the core of rational drug design.

Table 4.1 Comparison of Classical Statistical Methods Used in QSAR Modelling

Statistical Mathematical Typical Application  Advantages Limitations
Method Basis in QSAR
Simple Linear One-variable Early Easy Ignores
Regression least-squares fit hydrophobicity— interpretation; multivariable
(SLR) activity (Hansch) minimal data need interplay; poor
correlations generalization
Multiple Multivariate Structure—activity Quantitative Sensitive to
Linear least-squares correlations with coefficients; collinearity;
Regression optimization physicochemical mechanistic insight assumes
(MLR) descriptors linearity
Principal Eigenvector Data reduction and Identifies hidden Unsupervised;
Component decomposition of  visualization of trends; mitigates no direct activity
Analysis variance— descriptor space redundancy linkage
(PCA) covariance matrix
Partial Least Latent-variable 3D-QSAR Handles > Requires
Squares (PLS) projection (CoMFA/CoMSIA) descriptors than interpretation of
maximizing X-Y and collinear samples; robustto  latent
covariance datasets multicollinearity components
Stepwise Iterative Feature subset Automated; Risk of
Regression/  descriptor optimization improves model overfitting;
Genetic selection by simplicity dataset-
Algorithms statistical criteria dependent
Principal Regression on When descriptors Reduces Loss of direct
Component PCA components are highly correlated dimensionality; descriptor
Regression computationally meaning
(PCR) efficient
Ridge / Lasso  Penalized least Regularization of Controls Parameter
Regression squares (L2 / L1 QSAR models overfitting; tuning required;
norms) improves stability less intuitive
coefficients

46



Data
Collection

Prediction
&Interpretation

W | Descriptor W ‘ Feature

» Biological » Physicochemical + Correlation * Internal * Activity

activity (ICsq, - Topological matrices cross-validation prediction
.

Calculation Selection | | Validation |

K, ECso Elestionic * Stepwise « External test-set « Mechanistic
* Molecular regression assessment analysis

structures « Variance- . Appligability
inflation analysis domain

Figure 1 Workflow of Classical QSAR Model Development

4.9 Future Perspectives: Bridging Classical and Al-Driven QSAR

The trajectory of QSAR methodology is increasingly convergent with artificial intelligence, yet
classical statistical foundations remain indispensable. Future research is expected to integrate hybrid
models where MLR- or PLS-derived interpretable coefficients inform deep-learning architectures,
preserving explainability while enhancing predictive performance. Transfer learning and multi-task
regression could extend classical QSAR principles to multitarget pharmacology, simultaneously
optimizing efficacy and ADMET endpoints. Emerging quantum chemical descriptors, topological
indices from graph theory, and molecular interaction fingerprints will expand descriptor diversity,
allowing more comprehensive mapping of structure activity landscapes. Coupling classical QSAR
with molecular dynamics simulations can incorporate conformational flexibility into regression
models, bridging static descriptors with dynamic behavior.

In regulatory science, the movement toward transparent Al aligns with QSAR’s long-standing
emphasis on interpretability. OECD-compliant hybrid models may soon become the standard for
submission-ready computational toxicology. As data availability increases through FAIR-compliant
repositories, statistically grounded QSAR frameworks will play a central role in model reproducibility
and open-science validation. Ultimately, the integration of statistical QSAR, ADMET modeling, and Al
represents not a replacement but an evolution of classical principles extending the quantitative bridge
between molecular structure and pharmacological function toward a fully data-centric paradigm of
predictive drug design.

4.10 CONCLUSION

Classical QSAR represents one of the most enduring and scientifically grounded paradigms in
computational drug design. Originating from the pioneering work of Hansch and Free Wilson, it
established the quantitative link between molecular structure and biological activity that remains
central to modern pharmacological modeling. Through linear regression, multivariate analysis, and
rigorous statistical validation, classical QSAR models provide interpretable relationships that enable
rational optimization of potency, selectivity, and pharmacokinetic behavior.

Despite the rapid evolution of artificial intelligence and deep learning, classical QSAR endures
as the conceptual and regulatory foundation upon which modern predictive systems are built. Its
advantages lie in transparency, simplicity, and mechanistic clarity qualities critical for hypothesis
generation and decision-making in medicinal chemistry. The continued relevance of multiple linear
regression (MLR), partial least squares (PLS), and principal component analysis (PCA) in ADMET
prediction demonstrates that statistically interpretable methods remain indispensable tools for
understanding the molecular determinants of efficacy and safety.
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