Genome Publications
https://doi.org/10.61096/978-81-990998-7-6_5

Chapter 5

Higher-Dimensional QSAR: 2D, 3D, 4D, 5D and 6D Models for Molecular
Flexibility

Saravanakumar A
Department of Pharmaceutical Biotechnology, Vellalar College of Pharmacy, Thindal,
Erode, Tamil Nadu, India.
Kavin Kumar MC
Department of Pharmaceutical Chemistry, Vellalar College of Pharmacy,
Thindal, Erode, Tamil Nadu, India.
Jeevananathan P
Department of Pharmaceutical Chemistry, Vellalar College of Pharmacy,
Thindal, Erode, Tamil Nadu, India.
Monisha K
Department of Pharmaceutical Chemistry, Vellalar College of Pharmacy,
Thindal, Erode, Tamil Nadu, India.

Abstract: Quantitative Structure Activity Relationship (QSAR) modelling has undergone a remarkable
evolution from one-dimensional physicochemical correlations to higher-dimensional frameworks that
integrate molecular geometry, conformational dynamics, solvation, and receptor flexibility. The
transition from 2D to 6D QSAR represents a progressive refinement of how molecular structure is
encoded, interpreted, and related to biological activity. Two-dimensional (2D) QSAR captures
topological and physicochemical patterns; three-dimensional (3D) QSAR models, such as Comparative
Molecular Field Analysis (Coma) and Comparative Molecular Similarity Indices Analysis (CoMSIA),
incorporate steric and electrostatic fields; four-dimensional (4D) QSAR accounts for conformational
ensembles and dynamic sampling; five-dimensional (5D) QSAR introduces environmental and induced-
fit effects; and six-dimensional (6D) QSAR expands this framework by integrating receptor—ligand
dynamics and solvent interactions in near-physiological contexts. This chapter provides an exhaustive
account of these multidimensional QSAR models, explaining their theoretical foundations,
computational workflows, and comparative merits. Emphasis is placed on methodological
transparency, algorithmic advances, validation strategies, and real-world applications in drug
discovery, such as anticancer, antiviral, and enzyme inhibitor design. Finally, the chapter explores how
artificial intelligence (Al), molecular dynamics, and quantum mechanics are converging to define the
next frontier of multidimensional QSAR.

Keywords: QSAR, molecular flexibility, multidimensional modelling, COMFA, CoMSIA.

Citation: Saravanakumar A, Kavin Kumar MC, Jeevananathan P, Monisha K. Higher-Dimensional QSAR:
2D, 3D, 4D, 5D and 6D Models for Molecular Flexibility. Comprehensive Approaches in Computer-Aided
Drug Design: QSAR, Docking, Screening, Homology, Pharmacophore and Al-Driven Insights. Genome
Publication. 2025; Pp49-58. https://doi.org/10.61096/978-81-990998-7-6 5

49



5.0 INTRODUCTION

The development of QSAR has been central to computer-aided drug design (CADD),
embodying the principle that molecular structure governs biological function. The earliest QSAR
models, introduced by Hansch and Fujita in the 1960s, correlated one-dimensional (1D) descriptors
such as hydrophobicity, electronic parameters, and steric constants with biological activity through
linear regression equations [1]. While powerful in capturing fundamental relationships, these models
inherently assumed a rigid representation of molecular structure, neglecting the three-dimensional
and dynamic nature of ligand—-receptor interactions. The dimensional evolution of QSAR reflects a
conceptual expansion from static molecular descriptions toward dynamic, multi-faceted models that
more closely resemble real biological environments. Two-dimensional (2D) QSAR introduced
connectivity indices and topological descriptors derived from molecular graphs, allowing efficient
screening of large datasets without requiring explicit spatial alignment [2]. However, these models
could not account for spatial orientation and electronic field interactions within the binding pocket.
Three-dimensional (3D) QSAR exemplified by Coma and CoMSIA addressed this limitation by
correlating biological activity with molecular interaction fields mapped in three-dimensional space [3].
These field-based models revolutionized ligand-based design by capturing steric and electrostatic
interactions around aligned conformations of active compounds.

Subsequent generations of QSAR models integrated conformational sampling and receptor-
induced effects, giving rise to 4D and 5D QSAR. Four-dimensional QSAR recognized that molecules exist
not as single conformers but as dynamic ensembles, whose averaged interactions influence biological
activity [4]. Five-dimensional QSAR incorporated multiple receptor conformations and environmental
factors such as solvation and pH-dependent effects [5]. Finally, six-dimensional (6D) QSAR introduced
receptor-ligand dynamics and complex environmental modelling, approaching the fidelity of
molecular dynamics simulations while retaining QSAR’s statistical interpretability [6]. The key
motivation behind this dimensional progression is molecular flexibility. Biological systems are
inherently dynamic proteins fluctuate between conformational states, solvent shells modulate binding
energetics, and ligands adapt their shapes to optimize interactions. Thus, higher-dimensional QSAR
seeks to bridge the gap between statistical correlation and physical reality. The chapters preceding this
one established foundational descriptors and statistical models; this chapter extends these principles
to explore multidimensional QSAR as a continuum of complexity linking structural representation,
biological realism, and predictive accuracy.

5.1 Two-Dimensional QSAR: Graphs, Connectivity and Topological Indices

Two-dimensional QSAR emerged as the natural evolution of Hansch’s 1D formulations,
providing a balance between interpretability and computational efficiency. In 2D QSAR, molecules are
represented as graphs networks of atoms (vertices) connected by bonds (edges) from which numerical
descriptors encoding molecular topology, connectivity, and substructural features are derived. These
descriptors capture the molecule’s overall shape, branching pattern, and atomic environments without
requiring explicit 3D coordinates [7]. Commonly used 2D descriptors include Wiener indices, Balaban
connectivity indices, Kier—Hall shape indices, molecular fingerprints, and counts of atom types, rings,
or functional groups [8]. For instance, the Balaban index (J) provides a measure of molecular branching,
while the molecular connectivity index (x) reflects how electronic properties propagate through bonds.
These descriptors are computed rapidly from SMILES or InChl representations, making 2D QSAR
particularly suitable for high-throughput virtual screening.
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The general workflow involves descriptor generation (using tools such as Riti, Dragon, or
Paddle-Descriptor), dataset curation, activity transformation (e.g., converting ICso topicso), feature
selection via algorithms like principal component analysis (PCA) or genetic algorithms, and regression
modelling (e.g., multiple linear regression, support vector machines, or random forests) [9]. Model
validation employs internal methods (cross-validation, Y-randomization) and external test sets to
assess predictive robustness. While 2D QSAR lacks spatial information, its statistical simplicity often
leads to excellent predictive performance when applied to congeneric series. For example, 2D QSAR
successfully guided optimization of B-lactamase inhibitors and non-nucleoside reverse transcriptase
inhibitors by correlating topological indices with activity [10]. However, 2D QSAR cannot explicitly
represent conformational flexibility, electrostatic field distribution, or hydrogen bonding geometries
parameters critical for understanding molecular recognition at atomic resolution. Thus, the transition
to 3D QSAR marked a pivotal step toward capturing spatial interactions that underpin bioactivity.

5.2 Three-Dimensional QSAR: Coma, CoMSIA and Spatial Field Models

Three-dimensional QSAR (3D-QSAR) revolutionized ligand-based modelling by introducing
explicit spatial descriptors derived from aligned molecular structures. The seminal Coma (Comparative
Molecular Field Analysis) method, developed by Cramer and colleagues in 1988, quantified how
variations in steric and electrostatic interaction fields surrounding a set of aligned molecules correlate
with their biological activities [11]. In Coma, each molecule is placed within a 3D lattice, and interaction
energies between the molecule and a probe atom (commonly sp? carbon for steric and +1 charge for
electrostatics) are calculated at each grid point using Lennard—Jones and Coulombic potentials. The
resulting field values serve as independent variables in a partial least squares (PLS) regression against
biological activity [12]. A refinement of this approach, COMSIA (Comparative Molecular Similarity
Indices Analysis), introduced Gaussian-type distance dependence to calculate similarity indices for
steric, electrostatic, hydrophobic, hydrogen-bond donor, and acceptor fields [13]. This modification
mitigates the “spike” artifacts of Coma and allows smoother contour maps representing favourable
and unfavourable regions for molecular substitution. These contour plots offer intuitive visual
interpretations guiding medicinal chemists in lead optimization.

The success of 3D QSAR lies in its ability to correlate subtle spatial features such as bulky
substituents near hydrophobic pockets or electronegative atoms near polar residues with quantitative
activity trends. Software packages like SYBYL-X, MOE, Schrodinger Maestro, and Discovery Studio have
standardized Coma/CoMSIA workflows, including molecular alignment, lattice definition, field
computation, PLS modelling, and validation [14]. Model performance is commonly assessed using
statistical parameters such as g? (cross-validated correlation coefficient), r? (fitted correlation
coefficient), standard error of estimate (SEE), and predictive r? for external test sets. Despite its
interpretability, 3D QSAR faces critical challenges: (I) molecular alignment dependency since different
alignments can yield drastically different results; (ii) neglect of conformational flexibility only a single
conformation is typically modelled; and (iii) limited treatment of solvation and receptor dynamics [15].
These limitations motivated the next generation 4D QSAR which integrates conformational ensembles
and environmental averaging to represent molecular flexibility more realistically.

5.3 Four-Dimensional QSAR: Conformational Sampling and Ensemble Averaging

Four-dimensional QSAR (4D-QSAR) extends the Coma paradigm by incorporating molecular
dynamics explicitly recognizing that molecules populate multiple conformations rather than existing
as static entities. Introduced by Hopfinger and colleagues in the late 1990s, 4D-QSAR replaces the
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single “best” conformation with an ensemble of conformations sampled from molecular dynamics
(MD) or Monte Carlo simulations [16]. Each conformational snapshot contributes to an averaged
interaction field that captures the probability distribution of atomic positions and energetics over time.
The essence of 4D-QSAR lies in the concept of the grid cell occupancy descriptor (GCOD). The three-
dimensional space around the molecule is partitioned into grid cells, and the occupancy probability of
each atom type within these cells over the simulation trajectory forms the descriptor matrix. These
probabilistic descriptors, combined with physicochemical properties (charges, hydrophobicity), are
correlated with biological activity using regression or machine learning techniques [17]. The result is a
model that inherently accounts for conformational flexibility, intramolecular interactions, and solvent-
induced dynamics.

Compared with 3D QSAR, 4D QSAR eliminates the need for rigid alignment, as dynamic
sampling provides orientation-independent descriptors. Moreover, by averaging over ensembles, 4D
QSAR reduces noise and improves generalizability across structurally diverse compounds. Case studies
have demonstrated 4D QSAR’s superior predictive power for flexible ligands such as kinase inhibitors,
HIV protease inhibitors, and GPCR ligands [18]. Its integration with MD simulations allows direct
visualization of how conformational preferences influence activity. Nevertheless, 4D QSAR is
computationally demanding, requiring extensive conformational sampling and descriptor generation.
The dimensionality of the resulting descriptor matrix also poses statistical challenges, often
necessitating feature reduction or regularization methods. Yet, the conceptual leap it represents
embedding molecular flexibility within the QSAR formalism marks a major milestone toward realistic
modelling of ligand—receptor recognition.

5.4 Five-Dimensional QSAR: Incorporating Induced Fit and Solvent Effects

While 4D QSAR models dynamic ligand conformations, they still assume a static receptor and
a uniform dielectric environment. Five-dimensional QSAR (5D-QSAR) advances the framework by
integrating multiple receptor conformations, solvation effects, and induced-fit phenomena into the
QSAR model [19]. In essence, 5D QSAR treats both the ligand and its target as flexible entities,
acknowledging that binding involves mutual adaptation rather than rigid lock-and-key
complementarity. The theoretical foundation of 5D QSAR lies in ensemble receptor—ligand modelling,
wherein multiple receptor structures (obtained from X-ray crystallography, NMR, or molecular
dynamics) are used to generate separate field descriptors for each complex [20]. These descriptors,
together with solvent models such as the Poisson—Boltzmann surface area (PBSA) or generalized Born
approximations, capture how solvation modulates electrostatic and hydrophobic interactions.
Averaging across receptor and solvent states yields descriptors reflecting induced fit, hydration effects,
and electrostatic screening.

Computational workflows typically involve docking each ligand into multiple receptor
conformations, computing field descriptors for each receptor—ligand pair, and constructing regression
models correlating activity with averaged or weighted descriptors [21]. Modern implementations
employ automated alignment, statistical weighting of receptor conformations, and solvent-corrected
potentials, often within platforms like Schrodinger’s Phase, Discovery Studio, or 5D-QSAR modules in
SYBYL-X. The predictive performance is evaluated using internal validation (cross-validation,
bootstrapping) and external datasets, with emphasis on transferability to novel chemotypes. 5D QSAR
has found notable success in modelling systems with pronounced receptor flexibility such as kinases
with DFG-in/DFG-out conformations, proteases with flap movement, and GPCRs exhibiting active—
inactive state equilibria [22]. By capturing induced-fit effects, 5D QSAR can distinguish ligands that
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preferentially stabilize specific receptor states, providing mechanistic insights unavailable to lower-
dimensional models. However, it remains sensitive to the accuracy of receptor ensembles and
solvation models, and its high computational cost limits routine application.

5.5 Six-Dimensional QSAR: Dynamic Receptor-Ligand Interactions and Environmental Modelling

Six-dimensional QSAR (6D-QSAR) represents the current pinnacle of multidimensional QSAR
modelling, integrating dynamic receptor—ligand interactions, solvation dynamics, and environmental
variables into a unified predictive framework. Whereas 5D QSAR averages over discrete receptor
conformations, 6D QSAR continuously samples receptor—ligand dynamics often via molecular
dynamics simulations to derive time-dependent descriptors [23]. These descriptors encode transient
hydrogen bonds, hydrophobic contacts, water-mediated bridges, and conformational transitions, thus
capturing the full temporal and spatial complexity of molecular recognition. A typical 6D QSAR
workflow involves (1) performing MD simulations of receptor—ligand complexes in explicit solvent, (ii)
extracting interaction energy profiles and contact frequency matrices over the trajectory, (iii)
converting these into descriptors such as dynamic interaction fingerprints (dips) or averaged binding
free energy components, and (iv) correlating them with experimental activity data using advanced
statistical or machine learning techniques [24]. The inclusion of explicit solvent allows the model to
account for desolation penalties, water displacement effects, and entropic contributions parameters
often neglected in lower-dimensional approaches.

Recent studies have employed 6D QSAR to predict binding affinities of kinase inhibitors,
metalloprotease inhibitors, and allosteric modulators where dynamic hydrogen-bond networks
critically determine potency [25]. By integrating temporal dynamics, 6D QSAR bridges the conceptual
gap between QSAR and physics-based simulations, offering predictive accuracy approaching free
energy perturbation (FEP) methods while retaining interpretability through statistical models. Despite
its promise, 6D QSAR presents formidable challenges. The generation and management of high-
dimensional, time-resolved data require advanced dimensionality reduction and feature engineering
strategies. Moreover, the computational cost of long-timescale simulations and the complexity of
descriptor selection limit accessibility. Nevertheless, 6D QSAR represents a paradigm shift
transforming QSAR from static regression to a dynamic modelling discipline capable of capturing the
living behaviour of molecules within their biological milieu.

5.6 Comparative Evaluation of 2D-6D QSAR Approaches

The evolution from 2D to 6D QSAR reflects a trade-off between computational simplicity and
physicochemical realism. Comparative studies consistently demonstrate that predictive accuracy and
interpretability vary with molecular diversity, receptor knowledge, and data quality. Two-dimensional
models built on graph-theoretic and physicochemical descriptors excel in speed and scalability,
performing well for congeneric series where biological activity correlates with global molecular
features [26]. However, their inability to encode spatial or dynamic interactions limits mechanistic
insight. Three-dimensional QSAR bridges this gap by mapping steric and electrostatic fields, yielding
interpretable contour maps that visually guide structural modification. Its strength lies in structure-
activity elucidation for rigid or semi-rigid scaffolds with consistent binding orientations. Yet, the
dependence on accurate molecular alignment remains a persistent source of uncertainty. The
transition to four-dimensional QSAR improved robustness by incorporating conformational ensembles,
effectively sampling the conformational landscape through molecular dynamics or Monte Carlo
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simulations. The probabilistic descriptors generated in 4D QSAR capture intramolecular flexibility and
solvent effects implicitly, increasing model transferability across scaffolds [27].

Five-dimensional QSAR further advanced this paradigm by modelling receptor flexibility and
environmental parameters. In benchmark studies involving kinases, proteases, and GPCRs, 5D QSAR
exhibited superior correlation coefficients (r? > 0.90) and predictive power (g > 0.70) compared with
3D counterparts [28]. Nonetheless, these benefits come at higher computational cost and dependence
on reliable receptor ensembles. Six-dimensional QSAR, the most complex, demonstrates near-
guantum-mechanical fidelity through explicit receptor—ligand dynamics, offering unmatched
interpretability at the expense of computational feasibility. Table 1 conceptually summarizes
comparative characteristics of 2D—-6D QSAR models.

Table 1. Comparative characteristics of 2D-6D QSAR frameworks

Model Key Descriptors Biological Advantages Limitations
Dimension Realism

2D Topological indices, Low Fast, interpretable No 3D or dynamic
fingerprints data

3D Field-based (steric, Moderate Spatial Alignment sensitive
electrostatic) interpretation

4D Ensemble High Captures flexibility Computationally
occupancy intensive
descriptors

5D Ligand + receptor Very High Includes induced fit  Requires multiple
ensembles and solvent structures

6D Dynamic interaction  Extreme Physiological realism Data volume and
fingerprints cost

This progression emphasizes that dimensional enhancement should align with research objectives.
For rapid lead prioritization, 2D/3D QSAR suffice; for mechanistic or allosteric analyses, 4D-6D
frameworks are indispensable.

5.7 Software Platforms and Workflow Tutorials

The implementation of higher-dimensional QSAR demands integration of cheminformatics,
molecular modelling, and machine-learning tools. Commonly used environments include SYBYL-
X, MOE, Schrédinger Maestro, KNIME, and open-source ecosystems built around Ritiand
Depeche [29].

In 3D QSAR, SYBYL-X's Coma and CoMSIA modules remain standard. The typical workflow comprises:
1. Import and align molecular structures.
2. Generate steric/electrostatic grids (spacing = 2 A).
3. Compute field energies using Lennard-Jones + Coulombic potentials.
4. Apply PLS regression and visualize contour maps.

For 4D QSAR, software like 4D-QSAR Analyzer or in-house Python scripts integrate molecular-
dynamics trajectories (GROMACS, AMBER). Users run 1-10 ns simulations, extract representative
snapshots every 100 PS, compute grid-cell occupancy descriptors, and build regression models using
scikit-learn. 5D QSAR workflows rely on multi-receptor alignment: receptor conformations generated
by MD simulations are clustered via RMSD, ligands are docked into each representative structure
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using Auto Dock Vina or Glide, and field descriptors averaged across receptor states. Solvent
corrections (e.g., PBSA/GBSA) can be implemented through AMBER Tools.

6D QSAR necessitates data pipelines for trajectory processing and descriptor reduction.
Dynamic interaction fingerprints can be extracted with Metra or cpptraj, followed by principal
component or autoencoder compression before regression. Emerging KNIME nodes and Python
packages now automate feature selection, cross-validation, and external test evaluation [30]. Critical
to all workflows are validation metrics g > 0.5 and r? > 0.6 typically denote acceptable predictive
models and the applicability-domain analysis (e.g., leverage method) that defines reliable chemical
space.

5.8 Critical Appraisal: Strengths, Limitations and Validation Challenges

Higher-dimensional QSAR provides unprecedented detail, but interpretability and
reproducibility remain crucial concerns. The strengths lie in its ability to model molecular flexibility,
solvent polarization, and induced-fit phenomena, thereby enhancing both statistical correlation and
mechanistic plausibility [31]. In contrast to classical QSAR, multidimensional models often reveal why
structurally similar compounds differ in potency through localized field perturbations or transient
water bridges thus facilitating rational design rather than empirical optimization. However, several
limitations temper enthusiasm. Data overfitting is prevalent due to descriptor redundancy in high-
dimensional matrices, necessitating rigorous feature selection or regularization. Alignment
dependence in 3D models and receptor ensemble uncertainty in 5D frameworks introduce variability.
Furthermore, computational expense restricts 6D QSAR to small datasets, limiting generalizability.
Validation remains a persistent challenge: internal metrics (cross-validation) may overestimate
predictive ability, underscoring the need for external validation, Y-randomization, and permutation
testing [32].

Another critical issue is interpretability. While 3D contour maps are visually intuitive, 50-6D
descriptors derived from dynamics or solvent models are abstract, complicating medicinal-chemistry
translation. The community increasingly advocates hybrid approaches combining field-based
visualization with statistical learning to maintain transparency. Finally, reproducibility across software
platforms requires standardized descriptor definitions and reporting formats consistent with OECD
QSAR Validation Principles [33].

b A orx
3D

D 4D 5D 6D

2D
Figure 1. Conceptual evolution of 2D—6D QSAR models

5.9 Applications: Anticancer, Antiviral and Enzyme Inhibitor Case Studies

Multidimensional QSAR approaches have demonstrated tangible success across therapeutic
domains. Anticancer Agents. In 3D/4D QSAR analyses of kinase inhibitors, Coma and 4D-QSAR models
delineated steric hot spots responsible for selectivity between EGFR and VEGFR families [34]. The
inclusion of receptor conformational ensembles in 5D QSAR reproduced activity cliffs arising from DFG-
loop flexibility, guiding synthesis of inhibitors with nanomolar potency. Antiviral Compounds. 4D QSAR
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of HIV-1 protease inhibitors identified conformational sub-states correlated with resistance mutations,
while subsequent 6D QSAR studies integrating explicit-solvent MD revealed transient water networks
stabilizing high-affinity complexes [35]. These insights facilitated rational substitution at hinge-region
pharmacophores, improving resilience to mutation. Enzyme Inhibitors. For matrix metalloproteinase
and carbonic anhydrase inhibitors, 5D-6D QSAR analyses captured solvent-mediated electrostatic
compensation effects critical to isoform selectivity [36]. In combination with CoMSIA, these models
provided contour maps linking hydrophobic field strength to kinetic inhibition constants. Collectively,
these case studies validate higher-dimensional QSAR as both a predictive and interpretive engine,
capable of informing structure optimization where traditional QSAR fails.

5.10 Integration of Higher-Dimensional QSAR with Al and Molecular Dynamics

The convergence of artificial intelligence and molecular simulation has reinvigorated QSAR.
Machine-learning algorithms particularly random forests, support-vector machines, and deep neural
networks excel at recognizing non-linear patterns within high-dimensional descriptor spaces [37].
When coupled with 4D-6D QSAR descriptors, Al models capture complex relationships between
dynamic interaction fingerprints and bioactivity. Recent advances include graph neural networks
(GNNs) that directly process molecular graphs while incorporating 3D/4D information, effectively
bridging classical QSAR with physics-based learning. For example, Depeche's Graphon and Schmeat
architectures predict binding affinities by learning continuous-filter convolutions over atomic
environments derived from MD trajectories [38]. These hybrid models outperform conventional
regression in both accuracy and transferability. Integration with molecular dynamics provides an
additional layer of interpretability. Al algorithms trained on MD-derived features (RMSF, hydrogen-
bond persistence, energy components) can identify dominant interaction modes and estimate binding
free energies. Furthermore, active-learning QSAR frameworks iteratively select new compounds for
simulation or synthesis, closing the loop between computational prediction and experimental
validation [39]. This fusion heralds a paradigm where multidimensional QSAR, MD, and Al operate
synergistically: MD generates dynamic data, Al learns complex patterns, and QSAR provides
interpretable quantitative relationships creating adaptive, continuously improving models of
molecular recognition.

5.11 Future Perspectives: Beyond 6D Hybrid, Quantum and Al-Driven QSAR Models

The conceptual ceiling of 6D QSAR is being challenged by emerging paradigms that integrate
guantum mechanics, coarse-grained dynamics, and multimodal Al. Hybrid Quantum-QSAR
(QQSAR) models couple guantum-chemical descriptors such as HOMO-LUMO gaps, electrostatic
potential maps, and polarizabilities with 4D/5D field descriptors to account for electronic
reorganization during binding [40]. Such integration improves predictions for transition-metal
complexes and photoreactive ligands, domains traditionally resistant to classical QSAR. Multiscale
QSAR, combining atomistic and system-level descriptors, is emerging as a tool for systems
pharmacology linking molecular potency with network effects and polypharmacology indices.
Meanwhile, quantum computing offers potential acceleration of descriptor calculation and feature
selection through variational quantum circuits [41]. Artificial intelligence will likely redefine QSAR
representation itself. Transformer-based generative models can learn continuous chemical spaces,
enabling inverse design where target properties dictate molecular structure. When these architectures
assimilate 4D-6D dynamic data, they may yield fully differentiable structure-to-activity maps. Looking
forward, the boundaries between QSAR, molecular dynamics, and quantum simulation will blur. Future
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models will be data-centric, adaptive, and interpretable embedding explainable Al principles to ensure
transparency in decision-making. The progression from 1D to 6D QSAR, and now toward Al-
augmented, quantum-enhanced paradigms, exemplifies the continuous evolution of computational
pharmacology toward predictive precision and mechanistic depth.

CONCLUSION

The progressive transition from 2D to 6D QSAR marks a fundamental paradigm shift in
computational drug design. Each successive dimension introduce s additional layers of molecular
realism ranging from structural topology to spatial, dynamic, and environmental representations.
While 2D and 3D QSAR offer rapid screening and intuitive interpretation, higher-dimensional models
(4D-6D) capture the intrinsic flexibility of both ligands and receptors, enabling mechanistic accuracy
in complex systems. The convergence of QSAR with molecular dynamics, machine learning, and
guantum computation promises a new era of hybrid predictive modeling where interpretability,
adaptability, and accuracy coalesce. Future research will likely focus on automating high-dimensional
descriptor generation, integrating real-time dynamics, and establishing standardized validation
protocols to ensure reproducibility. Ultimately, higher-dimensional QSAR stands as a cornerstone of
precision pharmacology translating molecular motion and interaction complexity into actionable
predictive knowledge.
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