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Abstract: Quan"ta"ve Structure Ac"vity Rela"onship (QSAR) modelling has undergone a remarkable 

evolu"on from one-dimensional physicochemical correla"ons to higher-dimensional frameworks that 

integrate molecular geometry, conforma"onal dynamics, solva"on, and receptor flexibility. The 

transi"on from 2D to 6D QSAR represents a progressive refinement of how molecular structure is 

encoded, interpreted, and related to biological ac"vity. Two-dimensional (2D) QSAR captures 

topological and physicochemical pa�erns; three-dimensional (3D) QSAR models, such as Compara"ve 

Molecular Field Analysis (Coma) and Compara"ve Molecular Similarity Indices Analysis (CoMSIA), 

incorporate steric and electrosta"c fields; four-dimensional (4D) QSAR accounts for conforma"onal 

ensembles and dynamic sampling; five-dimensional (5D) QSAR introduces environmental and induced-

fit effects; and six-dimensional (6D) QSAR expands this framework by integra"ng receptor–ligand 

dynamics and solvent interac"ons in near-physiological contexts. This chapter provides an exhaus"ve 

account of these mul"dimensional QSAR models, explaining their theore"cal founda"ons, 

computa"onal workflows, and compara"ve merits. Emphasis is placed on methodological 

transparency, algorithmic advances, valida"on strategies, and real-world applica"ons in drug 

discovery, such as an"cancer, an"viral, and enzyme inhibitor design. Finally, the chapter explores how 

ar"ficial intelligence (AI), molecular dynamics, and quantum mechanics are converging to define the 

next fron"er of mul"dimensional QSAR. 
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5.0 INTRODUCTION 

The development of QSAR has been central to computer-aided drug design (CADD), 

embodying the principle that molecular structure governs biological func"on. The earliest QSAR 

models, introduced by Hansch and Fujita in the 1960s, correlated one-dimensional (1D) descriptors 

such as hydrophobicity, electronic parameters, and steric constants with biological ac"vity through 

linear regression equa"ons [1]. While powerful in capturing fundamental rela"onships, these models 

inherently assumed a rigid representa"on of molecular structure, neglec"ng the three-dimensional 

and dynamic nature of ligand–receptor interac"ons. The dimensional evolu"on of QSAR reflects a 

conceptual expansion from sta"c molecular descrip"ons toward dynamic, mul"-faceted models that 

more closely resemble real biological environments. Two-dimensional (2D) QSAR introduced 

connec"vity indices and topological descriptors derived from molecular graphs, allowing efficient 

screening of large datasets without requiring explicit spa"al alignment [2]. However, these models 

could not account for spa"al orienta"on and electronic field interac"ons within the binding pocket. 

Three-dimensional (3D) QSAR exemplified by Coma and CoMSIA addressed this limita"on by 

correla"ng biological ac"vity with molecular interac"on fields mapped in three-dimensional space [3]. 

These field-based models revolu"onized ligand-based design by capturing steric and electrosta"c 

interac"ons around aligned conforma"ons of ac"ve compounds. 

Subsequent genera"ons of QSAR models integrated conforma"onal sampling and receptor-

induced effects, giving rise to 4D and 5D QSAR. Four-dimensional QSAR recognized that molecules exist 

not as single conformers but as dynamic ensembles, whose averaged interac"ons influence biological 

ac"vity [4]. Five-dimensional QSAR incorporated mul"ple receptor conforma"ons and environmental 

factors such as solva"on and pH-dependent effects [5]. Finally, six-dimensional (6D) QSAR introduced 

receptor–ligand dynamics and complex environmental modelling, approaching the fidelity of 

molecular dynamics simula"ons while retaining QSAR’s sta"s"cal interpretability [6]. The key 

mo"va"on behind this dimensional progression is molecular flexibility. Biological systems are 

inherently dynamic proteins fluctuate between conforma"onal states, solvent shells modulate binding 

energe"cs, and ligands adapt their shapes to op"mize interac"ons. Thus, higher-dimensional QSAR 

seeks to bridge the gap between sta"s"cal correla"on and physical reality. The chapters preceding this 

one established founda"onal descriptors and sta"s"cal models; this chapter extends these principles 

to explore mul"dimensional QSAR as a con"nuum of complexity linking structural representa"on, 

biological realism, and predic"ve accuracy. 

 

5.1 Two-Dimensional QSAR: Graphs, Connec6vity and Topological Indices 

Two-dimensional QSAR emerged as the natural evolu"on of Hansch’s 1D formula"ons, 

providing a balance between interpretability and computa"onal efficiency. In 2D QSAR, molecules are 

represented as graphs networks of atoms (ver"ces) connected by bonds (edges) from which numerical 

descriptors encoding molecular topology, connec"vity, and substructural features are derived. These 

descriptors capture the molecule’s overall shape, branching pa�ern, and atomic environments without 

requiring explicit 3D coordinates [7]. Commonly used 2D descriptors include Wiener indices, Balaban 

connec"vity indices, Kier–Hall shape indices, molecular fingerprints, and counts of atom types, rings, 

or func"onal groups [8]. For instance, the Balaban index (J) provides a measure of molecular branching, 

while the molecular connec"vity index (χ) reflects how electronic proper"es propagate through bonds. 

These descriptors are computed rapidly from SMILES or InChI representa"ons, making 2D QSAR 

par"cularly suitable for high-throughput virtual screening. 
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The general workflow involves descriptor genera"on (using tools such as Ri", Dragon, or 

Paddle-Descriptor), dataset cura"on, ac"vity transforma"on (e.g., conver"ng IC₅₀ topic₅₀), feature 

selec"on via algorithms like principal component analysis (PCA) or gene"c algorithms, and regression 

modelling (e.g., mul"ple linear regression, support vector machines, or random forests) [9]. Model 

valida"on employs internal methods (cross-valida"on, Y-randomiza"on) and external test sets to 

assess predic"ve robustness. While 2D QSAR lacks spa"al informa"on, its sta"s"cal simplicity oRen 

leads to excellent predic"ve performance when applied to congeneric series. For example, 2D QSAR 

successfully guided op"miza"on of β-lactamase inhibitors and non-nucleoside reverse transcriptase 

inhibitors by correla"ng topological indices with ac"vity [10]. However, 2D QSAR cannot explicitly 

represent conforma"onal flexibility, electrosta"c field distribu"on, or hydrogen bonding geometries 

parameters cri"cal for understanding molecular recogni"on at atomic resolu"on. Thus, the transi"on 

to 3D QSAR marked a pivotal step toward capturing spa"al interac"ons that underpin bioac"vity. 

 

5.2 Three-Dimensional QSAR: Coma, CoMSIA and Spa6al Field Models 

Three-dimensional QSAR (3D-QSAR) revolu"onized ligand-based modelling by introducing 

explicit spa"al descriptors derived from aligned molecular structures. The seminal Coma (Compara"ve 

Molecular Field Analysis) method, developed by Cramer and colleagues in 1988, quan"fied how 

varia"ons in steric and electrosta"c interac"on fields surrounding a set of aligned molecules correlate 

with their biological ac"vi"es [11]. In Coma, each molecule is placed within a 3D laTce, and interac"on 

energies between the molecule and a probe atom (commonly sp³ carbon for steric and +1 charge for 

electrosta"cs) are calculated at each grid point using Lennard–Jones and Coulombic poten"als. The 

resul"ng field values serve as independent variables in a par"al least squares (PLS) regression against 

biological ac"vity [12]. A refinement of this approach, CoMSIA (Compara"ve Molecular Similarity 

Indices Analysis), introduced Gaussian-type distance dependence to calculate similarity indices for 

steric, electrosta"c, hydrophobic, hydrogen-bond donor, and acceptor fields [13]. This modifica"on 

mi"gates the “spike” ar"facts of Coma and allows smoother contour maps represen"ng favourable 

and unfavourable regions for molecular subs"tu"on. These contour plots offer intui"ve visual 

interpreta"ons guiding medicinal chemists in lead op"miza"on. 

The success of 3D QSAR lies in its ability to correlate subtle spa"al features such as bulky 

subs"tuents near hydrophobic pockets or electronega"ve atoms near polar residues with quan"ta"ve 

ac"vity trends. SoRware packages like SYBYL-X, MOE, Schrödinger Maestro, and Discovery Studio have 

standardized Coma/CoMSIA workflows, including molecular alignment, laTce defini"on, field 

computa"on, PLS modelling, and valida"on [14]. Model performance is commonly assessed using 

sta"s"cal parameters such as q² (cross-validated correla"on coefficient), r² (fi�ed correla"on 

coefficient), standard error of es"mate (SEE), and predic"ve r² for external test sets. Despite its 

interpretability, 3D QSAR faces cri"cal challenges: (I) molecular alignment dependency since different 

alignments can yield dras"cally different results; (ii) neglect of conforma"onal flexibility only a single 

conforma"on is typically modelled; and (iii) limited treatment of solva"on and receptor dynamics [15]. 

These limita"ons mo"vated the next genera"on 4D QSAR which integrates conforma"onal ensembles 

and environmental averaging to represent molecular flexibility more realis"cally. 

 

5.3 Four-Dimensional QSAR: Conforma6onal Sampling and Ensemble Averaging 

Four-dimensional QSAR (4D-QSAR) extends the Coma paradigm by incorpora"ng molecular 

dynamics explicitly recognizing that molecules populate mul"ple conforma"ons rather than exis"ng 

as sta"c en""es. Introduced by Hopfinger and colleagues in the late 1990s, 4D-QSAR replaces the 
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single “best” conforma"on with an ensemble of conforma"ons sampled from molecular dynamics 

(MD) or Monte Carlo simula"ons [16]. Each conforma"onal snapshot contributes to an averaged 

interac"on field that captures the probability distribu"on of atomic posi"ons and energe"cs over "me. 

The essence of 4D-QSAR lies in the concept of the grid cell occupancy descriptor (GCOD). The three-

dimensional space around the molecule is par""oned into grid cells, and the occupancy probability of 

each atom type within these cells over the simula"on trajectory forms the descriptor matrix. These 

probabilis"c descriptors, combined with physicochemical proper"es (charges, hydrophobicity), are 

correlated with biological ac"vity using regression or machine learning techniques [17]. The result is a 

model that inherently accounts for conforma"onal flexibility, intramolecular interac"ons, and solvent-

induced dynamics. 

Compared with 3D QSAR, 4D QSAR eliminates the need for rigid alignment, as dynamic 

sampling provides orienta"on-independent descriptors. Moreover, by averaging over ensembles, 4D 

QSAR reduces noise and improves generalizability across structurally diverse compounds. Case studies 

have demonstrated 4D QSAR’s superior predic"ve power for flexible ligands such as kinase inhibitors, 

HIV protease inhibitors, and GPCR ligands [18]. Its integra"on with MD simula"ons allows direct 

visualiza"on of how conforma"onal preferences influence ac"vity. Nevertheless, 4D QSAR is 

computa"onally demanding, requiring extensive conforma"onal sampling and descriptor genera"on. 

The dimensionality of the resul"ng descriptor matrix also poses sta"s"cal challenges, oRen 

necessita"ng feature reduc"on or regulariza"on methods. Yet, the conceptual leap it represents 

embedding molecular flexibility within the QSAR formalism marks a major milestone toward realis"c 

modelling of ligand–receptor recogni"on. 

 

5.4 Five-Dimensional QSAR: Incorpora6ng Induced Fit and Solvent Effects 

While 4D QSAR models dynamic ligand conforma"ons, they s"ll assume a sta"c receptor and 

a uniform dielectric environment. Five-dimensional QSAR (5D-QSAR) advances the framework by 

integra"ng mul"ple receptor conforma"ons, solva"on effects, and induced-fit phenomena into the 

QSAR model [19]. In essence, 5D QSAR treats both the ligand and its target as flexible en""es, 

acknowledging that binding involves mutual adapta"on rather than rigid lock-and-key 

complementarity. The theore"cal founda"on of 5D QSAR lies in ensemble receptor–ligand modelling, 

wherein mul"ple receptor structures (obtained from X-ray crystallography, NMR, or molecular 

dynamics) are used to generate separate field descriptors for each complex [20]. These descriptors, 

together with solvent models such as the Poisson–Boltzmann surface area (PBSA) or generalized Born 

approxima"ons, capture how solva"on modulates electrosta"c and hydrophobic interac"ons. 

Averaging across receptor and solvent states yields descriptors reflec"ng induced fit, hydra"on effects, 

and electrosta"c screening. 

Computa"onal workflows typically involve docking each ligand into mul"ple receptor 

conforma"ons, compu"ng field descriptors for each receptor–ligand pair, and construc"ng regression 

models correla"ng ac"vity with averaged or weighted descriptors [21]. Modern implementa"ons 

employ automated alignment, sta"s"cal weigh"ng of receptor conforma"ons, and solvent-corrected 

poten"als, oRen within pla]orms like Schrödinger’s Phase, Discovery Studio, or 5D-QSAR modules in 

SYBYL-X. The predic"ve performance is evaluated using internal valida"on (cross-valida"on, 

bootstrapping) and external datasets, with emphasis on transferability to novel chemotypes. 5D QSAR 

has found notable success in modelling systems with pronounced receptor flexibility such as kinases 

with DFG-in/DFG-out conforma"ons, proteases with flap movement, and GPCRs exhibi"ng ac"ve–

inac"ve state equilibria [22]. By capturing induced-fit effects, 5D QSAR can dis"nguish ligands that 
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preferen"ally stabilize specific receptor states, providing mechanis"c insights unavailable to lower-

dimensional models. However, it remains sensi"ve to the accuracy of receptor ensembles and 

solva"on models, and its high computa"onal cost limits rou"ne applica"on. 

 

5.5 Six-Dimensional QSAR: Dynamic Receptor–Ligand Interac6ons and Environmental Modelling 

Six-dimensional QSAR (6D-QSAR) represents the current pinnacle of mul"dimensional QSAR 

modelling, integra"ng dynamic receptor–ligand interac"ons, solva"on dynamics, and environmental 

variables into a unified predic"ve framework. Whereas 5D QSAR averages over discrete receptor 

conforma"ons, 6D QSAR con"nuously samples receptor–ligand dynamics oRen via molecular 

dynamics simula"ons to derive "me-dependent descriptors [23]. These descriptors encode transient 

hydrogen bonds, hydrophobic contacts, water-mediated bridges, and conforma"onal transi"ons, thus 

capturing the full temporal and spa"al complexity of molecular recogni"on. A typical 6D QSAR 

workflow involves (I) performing MD simula"ons of receptor–ligand complexes in explicit solvent, (ii) 

extrac"ng interac"on energy profiles and contact frequency matrices over the trajectory, (iii) 

conver"ng these into descriptors such as dynamic interac"on fingerprints (dips) or averaged binding 

free energy components, and (iv) correla"ng them with experimental ac"vity data using advanced 

sta"s"cal or machine learning techniques [24]. The inclusion of explicit solvent allows the model to 

account for desola"on penal"es, water displacement effects, and entropic contribu"ons parameters 

oRen neglected in lower-dimensional approaches. 

Recent studies have employed 6D QSAR to predict binding affini"es of kinase inhibitors, 

metalloprotease inhibitors, and allosteric modulators where dynamic hydrogen-bond networks 

cri"cally determine potency [25]. By integra"ng temporal dynamics, 6D QSAR bridges the conceptual 

gap between QSAR and physics-based simula"ons, offering predic"ve accuracy approaching free 

energy perturba"on (FEP) methods while retaining interpretability through sta"s"cal models. Despite 

its promise, 6D QSAR presents formidable challenges. The genera"on and management of high-

dimensional, "me-resolved data require advanced dimensionality reduc"on and feature engineering 

strategies. Moreover, the computa"onal cost of long-"mescale simula"ons and the complexity of 

descriptor selec"on limit accessibility. Nevertheless, 6D QSAR represents a paradigm shiR 

transforming QSAR from sta"c regression to a dynamic modelling discipline capable of capturing the 

living behaviour of molecules within their biological milieu. 

 

5.6 Compara6ve Evalua6on of 2D–6D QSAR Approaches 

The evolu"on from 2D to 6D QSAR reflects a trade-off between computa"onal simplicity and 

physicochemical realism. Compara"ve studies consistently demonstrate that predic"ve accuracy and 

interpretability vary with molecular diversity, receptor knowledge, and data quality. Two-dimensional 

models built on graph-theore"c and physicochemical descriptors excel in speed and scalability, 

performing well for congeneric series where biological ac"vity correlates with global molecular 

features [26]. However, their inability to encode spa"al or dynamic interac"ons limits mechanis"c 

insight. Three-dimensional QSAR bridges this gap by mapping steric and electrosta"c fields, yielding 

interpretable contour maps that visually guide structural modifica"on. Its strength lies in structure-

ac"vity elucida"on for rigid or semi-rigid scaffolds with consistent binding orienta"ons. Yet, the 

dependence on accurate molecular alignment remains a persistent source of uncertainty. The 

transi"on to four-dimensional QSAR improved robustness by incorpora"ng conforma"onal ensembles, 

effec"vely sampling the conforma"onal landscape through molecular dynamics or Monte Carlo 



54 

simula"ons. The probabilis"c descriptors generated in 4D QSAR capture intramolecular flexibility and 

solvent effects implicitly, increasing model transferability across scaffolds [27]. 

Five-dimensional QSAR further advanced this paradigm by modelling receptor flexibility and 

environmental parameters. In benchmark studies involving kinases, proteases, and GPCRs, 5D QSAR 

exhibited superior correla"on coefficients (r² > 0.90) and predic"ve power (q² > 0.70) compared with 

3D counterparts [28]. Nonetheless, these benefits come at higher computa"onal cost and dependence 

on reliable receptor ensembles. Six-dimensional QSAR, the most complex, demonstrates near-

quantum-mechanical fidelity through explicit receptor–ligand dynamics, offering unmatched 

interpretability at the expense of computa"onal feasibility. Table 1 conceptually summarizes 

compara"ve characteris"cs of 2D–6D QSAR models. 

 

Table 1. Compara6ve characteris6cs of 2D–6D QSAR frameworks 

Model 

Dimension 

Key Descriptors Biological 

Realism 

Advantages Limita6ons 

2D Topological indices, 

fingerprints 

Low Fast, interpretable No 3D or dynamic 

data 

3D Field-based (steric, 

electrosta"c) 

Moderate Spa"al 

interpreta"on 

Alignment sensi"ve 

4D Ensemble 

occupancy 

descriptors 

High Captures flexibility Computa"onally 

intensive 

5D Ligand + receptor 

ensembles 

Very High Includes induced fit 

and solvent 

Requires mul"ple 

structures 

6D Dynamic interac"on 

fingerprints 

Extreme Physiological realism Data volume and 

cost 

 

This progression emphasizes that dimensional enhancement should align with research objec"ves. 

For rapid lead priori"za"on, 2D/3D QSAR suffice; for mechanis"c or allosteric analyses, 4D–6D 

frameworks are indispensable. 

 

5.7 So=ware Pla>orms and Workflow Tutorials 

The implementa"on of higher-dimensional QSAR demands integra"on of cheminforma"cs, 

molecular modelling, and machine-learning tools. Commonly used environments include SYBYL-

X, MOE, Schrödinger Maestro, KNIME, and open-source ecosystems built around Ri" and 

Depeche [29]. 

In 3D QSAR, SYBYL-X’s Coma and CoMSIA modules remain standard. The typical workflow comprises: 

1. Import and align molecular structures. 

2. Generate steric/electrosta"c grids (spacing ≈ 2 Å). 

3. Compute field energies using Lennard-Jones + Coulombic poten"als. 

4. Apply PLS regression and visualize contour maps. 

For 4D QSAR, soRware like 4D-QSAR Analyzer or in-house Python scripts integrate molecular-

dynamics trajectories (GROMACS, AMBER). Users run 1–10 ns simula"ons, extract representa"ve 

snapshots every 100 PS, compute grid-cell occupancy descriptors, and build regression models using 

scikit-learn. 5D QSAR workflows rely on mul"-receptor alignment: receptor conforma"ons generated 

by MD simula"ons are clustered via RMSD, ligands are docked into each representa"ve structure 
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using Auto Dock Vina or Glide, and field descriptors averaged across receptor states. Solvent 

correc"ons (e.g., PBSA/GBSA) can be implemented through AMBER Tools. 

6D QSAR necessitates data pipelines for trajectory processing and descriptor reduc"on. 

Dynamic interac"on fingerprints can be extracted with Metra or cpptraj, followed by principal 

component or autoencoder compression before regression. Emerging KNIME nodes and Python 

packages now automate feature selec"on, cross-valida"on, and external test evalua"on [30]. Cri"cal 

to all workflows are valida"on metrics q² > 0.5 and r² > 0.6 typically denote acceptable predic"ve 

models and the applicability-domain analysis (e.g., leverage method) that defines reliable chemical 

space. 

 

5.8 Cri6cal Appraisal: Strengths, Limita6ons and Valida6on Challenges 

Higher-dimensional QSAR provides unprecedented detail, but interpretability and 

reproducibility remain crucial concerns. The strengths lie in its ability to model molecular flexibility, 

solvent polariza"on, and induced-fit phenomena, thereby enhancing both sta"s"cal correla"on and 

mechanis"c plausibility [31]. In contrast to classical QSAR, mul"dimensional models oRen reveal why 

structurally similar compounds differ in potency through localized field perturba"ons or transient 

water bridges thus facilita"ng ra"onal design rather than empirical op"miza"on. However, several 

limita"ons temper enthusiasm. Data overfiTng is prevalent due to descriptor redundancy in high-

dimensional matrices, necessita"ng rigorous feature selec"on or regulariza"on. Alignment 

dependence in 3D models and receptor ensemble uncertainty in 5D frameworks introduce variability. 

Furthermore, computa"onal expense restricts 6D QSAR to small datasets, limi"ng generalizability. 

Valida"on remains a persistent challenge: internal metrics (cross-valida"on) may overes"mate 

predic"ve ability, underscoring the need for external valida"on, Y-randomiza"on, and permuta"on 

tes"ng [32]. 

Another cri"cal issue is interpretability. While 3D contour maps are visually intui"ve, 5D–6D 

descriptors derived from dynamics or solvent models are abstract, complica"ng medicinal-chemistry 

transla"on. The community increasingly advocates hybrid approaches combining field-based 

visualiza"on with sta"s"cal learning to maintain transparency. Finally, reproducibility across soRware 

pla]orms requires standardized descriptor defini"ons and repor"ng formats consistent with OECD 

QSAR Valida"on Principles [33]. 

 

 
 

Figure 1. Conceptual evolu6on of 2D–6D QSAR models 

 

5.9 Applica6ons: An6cancer, An6viral and Enzyme Inhibitor Case Studies 

Mul"dimensional QSAR approaches have demonstrated tangible success across therapeu"c 

domains. An"cancer Agents. In 3D/4D QSAR analyses of kinase inhibitors, Coma and 4D-QSAR models 

delineated steric hot spots responsible for selec"vity between EGFR and VEGFR families [34]. The 

inclusion of receptor conforma"onal ensembles in 5D QSAR reproduced ac"vity cliffs arising from DFG-

loop flexibility, guiding synthesis of inhibitors with nanomolar potency. An"viral Compounds. 4D QSAR 
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of HIV-1 protease inhibitors iden"fied conforma"onal sub-states correlated with resistance muta"ons, 

while subsequent 6D QSAR studies integra"ng explicit-solvent MD revealed transient water networks 

stabilizing high-affinity complexes [35]. These insights facilitated ra"onal subs"tu"on at hinge-region 

pharmacophores, improving resilience to muta"on. Enzyme Inhibitors. For matrix metalloproteinase 

and carbonic anhydrase inhibitors, 5D–6D QSAR analyses captured solvent-mediated electrosta"c 

compensa"on effects cri"cal to isoform selec"vity [36]. In combina"on with CoMSIA, these models 

provided contour maps linking hydrophobic field strength to kine"c inhibi"on constants. Collec"vely, 

these case studies validate higher-dimensional QSAR as both a predic"ve and interpre"ve engine, 

capable of informing structure op"miza"on where tradi"onal QSAR fails. 

 

5.10 Integra6on of Higher-Dimensional QSAR with AI and Molecular Dynamics 

The convergence of ar"ficial intelligence and molecular simula"on has reinvigorated QSAR. 

Machine-learning algorithms par"cularly random forests, support-vector machines, and deep neural 

networks excel at recognizing non-linear pa�erns within high-dimensional descriptor spaces [37]. 

When coupled with 4D–6D QSAR descriptors, AI models capture complex rela"onships between 

dynamic interac"on fingerprints and bioac"vity. Recent advances include graph neural networks 

(GNNs) that directly process molecular graphs while incorpora"ng 3D/4D informa"on, effec"vely 

bridging classical QSAR with physics-based learning. For example, Depeche's Graphon and Schmeat 

architectures predict binding affini"es by learning con"nuous-filter convolu"ons over atomic 

environments derived from MD trajectories [38]. These hybrid models outperform conven"onal 

regression in both accuracy and transferability. Integra"on with molecular dynamics provides an 

addi"onal layer of interpretability. AI algorithms trained on MD-derived features (RMSF, hydrogen-

bond persistence, energy components) can iden"fy dominant interac"on modes and es"mate binding 

free energies. Furthermore, ac"ve-learning QSAR frameworks itera"vely select new compounds for 

simula"on or synthesis, closing the loop between computa"onal predic"on and experimental 

valida"on [39]. This fusion heralds a paradigm where mul"dimensional QSAR, MD, and AI operate 

synergis"cally: MD generates dynamic data, AI learns complex pa�erns, and QSAR provides 

interpretable quan"ta"ve rela"onships crea"ng adap"ve, con"nuously improving models of 

molecular recogni"on. 

 

5.11 Future Perspec6ves: Beyond 6D   Hybrid, Quantum and AI-Driven QSAR Models 

The conceptual ceiling of 6D QSAR is being challenged by emerging paradigms that integrate 

quantum mechanics, coarse-grained dynamics, and mul"modal AI. Hybrid Quantum-QSAR 

(QQSAR) models couple quantum-chemical descriptors such as HOMO–LUMO gaps, electrosta"c 

poten"al maps, and polarizabili"es with 4D/5D field descriptors to account for electronic 

reorganiza"on during binding [40]. Such integra"on improves predic"ons for transi"on-metal 

complexes and photoreac"ve ligands, domains tradi"onally resistant to classical QSAR. Mul"scale 

QSAR, combining atomis"c and system-level descriptors, is emerging as a tool for systems 

pharmacology linking molecular potency with network effects and polypharmacology indices. 

Meanwhile, quantum compu"ng offers poten"al accelera"on of descriptor calcula"on and feature 

selec"on through varia"onal quantum circuits [41]. Ar"ficial intelligence will likely redefine QSAR 

representa"on itself. Transformer-based genera"ve models can learn con"nuous chemical spaces, 

enabling inverse design where target proper"es dictate molecular structure. When these architectures 

assimilate 4D–6D dynamic data, they may yield fully differen"able structure-to-ac"vity maps. Looking 

forward, the boundaries between QSAR, molecular dynamics, and quantum simula"on will blur. Future 
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models will be data-centric, adap"ve, and interpretable embedding explainable AI principles to ensure 

transparency in decision-making. The progression from 1D to 6D QSAR, and now toward AI-

augmented, quantum-enhanced paradigms, exemplifies the con"nuous evolu"on of computa"onal 

pharmacology toward predic"ve precision and mechanis"c depth. 

 

CONCLUSION 

The progressive transi"on from 2D to 6D QSAR marks a fundamental paradigm shiR in 

computa"onal drug design. Each successive dimension introduce s addi"onal layers of molecular 

realism ranging from structural topology to spa"al, dynamic, and environmental representa"ons. 

While 2D and 3D QSAR offer rapid screening and intui"ve interpreta"on, higher-dimensional models 

(4D–6D) capture the intrinsic flexibility of both ligands and receptors, enabling mechanis"c accuracy 

in complex systems. The convergence of QSAR with molecular dynamics, machine learning, and 

quantum computa"on promises a new era of hybrid predic"ve modeling where interpretability, 

adaptability, and accuracy coalesce. Future research will likely focus on automa"ng high-dimensional 

descriptor genera"on, integra"ng real-"me dynamics, and establishing standardized valida"on 

protocols to ensure reproducibility. Ul"mately, higher-dimensional QSAR stands as a cornerstone of 

precision pharmacology transla"ng molecular mo"on and interac"on complexity into ac"onable 

predic"ve knowledge. 
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