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Abstract: Quantitative structure activity relationship (QSAR) modelling has evolved from classical
linear regression to sophisticated artificial intelligence (Al) and machine learning (ML) systems capable
of lear ning complex, nonlinear patterns between molecular structure and biological activity. The
integration of Al has expanded the predictive and interpretative scope of QSAR beyond traditional
descriptor activity correlations toward autonomous, data-driven discovery. This chapter explores the
theoretical foundations and practical implementation of Al-based QSAR modelling, detailing how
algorithms such as support vector machines, random forests, gradient boosting, artificial neural
networks, and deep learning architectures (CNNs, RNNs, transformers) have redefined molecular
prediction paradigms. It examines the transformation of molecular descriptors into machine-readable
representations, discusses feature selection, data preprocessing, and dimensionality reduction, and
analyses model evaluation through rigorous validation metrics and applicability domain frameworks.
Emphasis is placed on reproducibility, interpretability, and ethical considerations in Al-driven drug
design. Case studies and software workflows (e.g., RDKit, Scikit-Learn, KNIME, DeepChem, TensorFlow)
are included to demonstrate real-world applications in pharmacological target prediction, ADMET
estimation, and lead optimisation. Finally, the chapter outlines the emerging frontier of explainable Al
and generative QSAR, emphasising how hybrid approaches combining symbolic reasoning, graph
neural networks, and transfer learning are shaping the next generation of predictive models in
computational drug discovery.
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6.0 INTRODUCTION
Al and Machine Learning in QSAR

The development of artificial intelligence-based quantitative structure—activity relationship
(AI-QSAR) models marks a significant paradigm shift in computational drug design. Historically, QSAR
emerged as a statistical method linking molecular descriptors numerical representations of chemical
structure to biological activity, relying on linear regression or partial least squares (PLS) analysis. While
these classical methods offered interpretability, they were constrained by linear assumptions and
limited capacity to capture complex, nonlinear interactions inherent in molecular biology and
pharmacodynamics [1]. The increasing availability of large-scale chemical and biological datasets,
coupled with exponential advances in computational power, has catalysed the integration of Al and
ML into QSAR pipelines. Machine learning techniques are designed to detect intricate relationships
between input features (descriptors or fingerprints) and output responses (activities or affinities)
without explicit programming. Al-based QSAR leverages this ability to model nonlinearities and
interactions among molecular features that traditional statistical methods often overlook [2]. Unlike
classical QSAR, which typically assumes uniform descriptor—activity relationships, ML models learn
context-specific dependencies that can vary across chemical series or target classes. Algorithms such
as random forests (RF), support vector machines (SVMs), k-nearest neighbours (kNN), and ensemble
boosting methods like gradient boosting machines (GBMs) have shown remarkable performance
improvements in classification and regression tasks relevant to drug design [3].

The broader incorporation of deep learning particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) has further advanced QSAR by enabling direct learning from
raw molecular graphs, images, or sequences. These architectures eliminate the need for predefined
descriptors, instead deriving hierarchical representations that encode spatial and electronic
information directly from molecular topology [4]. Moreover, AI-QSAR supports multitask learning,
allowing models to predict multiple pharmacological properties simultaneously, which aligns with the
polypharmacological nature of most therapeutic agents. The implications of this transformation are
profound. AI-QSAR systems now underpin early-phase screening pipelines, ADMET prediction, toxicity
profiling, and even de novo molecular generation. They also enhance reproducibility and scalability by
automating key steps such as feature selection, data cleaning, and hyperparameter optimisation.
However, challenges persist in ensuring interpretability, data quality, and generalisation to novel
chemical spaces issues that require careful consideration when deploying Al models in regulatory and
translational contexts [5].

Ultimately, AI-QSAR represents a synthesis of chemoinformatics, statistical learning, and
molecular science. It embodies the transition from descriptive to predictive modelling in computer-
aided drug design (CADD), where models are no longer static tools but adaptive systems capable of
learning from diverse, high-dimensional data to generate actionable chemical insights [6].

6.1 Evolution from Classical to Al-Driven QSAR

The conceptual roots of QSAR lie in Hansch and Fujita’s seminal work during the 1960s, which
formalised the relationship between chemical structure and biological activity through linear free
energy relationships (LFERs). Early models such as the Hansch equation utilised physicochemical
parameters like hydrophobicity (logP), electronic (o), and steric constants (Es) to correlate with
biological endpoints [7]. This classical QSAR paradigm was characterised by its interpretability and
simplicity but suffered from inherent limitations particularly its assumption of linearity and inability to
capture higher-order feature interactions or molecular flexibility. As the dimensionality of available
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data expanded, multivariate techniques such as principal component analysis (PCA), multiple linear
regression (MLR), and partial least squares (PLS) regression became standard tools for constructing
multidimensional QSAR models. However, even these enhanced frameworks struggled to model
complex nonlinear structure—activity relationships, especially when applied to diverse chemical
scaffolds or multitarget datasets [8]. The advent of machine learning in the early 2000s provided a
transformative solution by introducing algorithms that could generalise from data without
presupposing linear behaviour.

Support vector machines, random forests, and artificial neural networks became key enablers
of nonlinear QSAR. These methods improved predictive accuracy by accommodating intricate feature
interactions and by learning decision boundaries directly from data. For example, SVM-based QSAR
models utilise kernel functions to map input data into higher-dimensional feature spaces, allowing the
discovery of complex activity trends even in small datasets [9]. Similarly, ensemble algorithms such as
RF and GBM combine multiple weak learners to reduce variance and bias, offering robustness against
overfitting a common problem in high-dimensional QSAR data. The transition from traditional to Al-
driven QSAR has been further accelerated by the integration of deep learning architectures. Deep
neural networks (DNNs) can automatically learn hierarchical molecular features, starting from atomic
connectivity and extending to abstract representations of pharmacophoric or conformational
properties [10]. This capacity has allowed researchers to bypass the need for manual descriptor
engineering, which historically constituted one of the most time-consuming aspects of QSAR
development.

Additionally, the integration of Al with chemoinformatics databases such as ChEMBL,
PubChem, and ZINC has facilitated large-scale model training using millions of compounds with
annotated bioactivities. This data-driven paradigm aligns with the principles of modern CADD, where
the goal is to leverage extensive molecular datasets to predict novel, potent, and safe chemical entities
[11]. The resulting AI-QSAR frameworks not only predict quantitative activities but also enable
classification tasks such as target identification, toxicity profiling, and off-target prediction. Yet, despite
these advances, interpretability remains a key concern. Classical QSAR’s strength lay in its mechanistic
clarity, while Al models often behave as “black boxes.” Recent research has thus shifted towards
explainable Al (XAl) methods, such as SHapley Additive exPlanations (SHAP) and Layer-wise Relevance
Propagation (LRP), which aim to visualise feature contributions and restore interpretability without
compromising predictive power [12].

The evolutionary trajectory of QSAR can therefore be viewed as a continuum from linear
regression-based models to adaptive, multi-layered Al systems capable of self-learning. Each stage
reflects a balance between interpretability and complexity, with the ultimate goal of producing
reliable, generalisable models that guide molecular design with both precision and insight [13].

6.2 Molecular Descriptors and Feature Representation in ML QSAR

Descriptors are the foundation of all QSAR models, acting as the mathematical bridge between
molecular structure and biological activity. In Al-based QSAR, descriptor engineering and
representation learning play central roles in determining model performance, generalisation, and
interpretability. Molecular descriptors can be broadly categorised into physicochemical, topological,
geometrical, quantum mechanical, and hybrid features, each capturing distinct structural or energetic
attributes of molecules [14]. Physicochemical descriptors include classical variables such as molecular
weight, logP, hydrogen bond donor/acceptor counts, polar surface area, and rotatable bonds. These
features describe the general drug-likeness of compounds and are often used in models predicting
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ADMET or pharmacokinetic profiles. Topological descriptors, such as Wiener and Balaban indices,
encode molecular connectivity and shape without requiring explicit three-dimensional coordinates.
These are particularly useful in early-stage screening where only 2D structures are available [15].

In contrast, geometrical and 3D descriptors capture spatial configurations, atomic distances,
and conformational flexibility, enabling more accurate modelling of receptor—ligand interactions.
Examples include WHIM (Weighted Holistic Invariant Molecular) descriptors and GRIND (Grid-
Independent Descriptors), which are essential for capturing steric and electrostatic complementarity
in high-dimensional QSAR [16]. Quantum chemical descriptors, derived from density functional theory
(DFT) calculations, quantify electronic parameters such as frontier orbital energies (HOMO/LUMO),
dipole moment, and molecular electrostatic potential, thereby linking electronic properties to
bioactivity [17]. With the rise of ML and deep learning, the focus has shifted from manually engineered
descriptors to data-driven molecular representations. In these models, molecules are encoded as
bitstrings (e.g., extended connectivity fingerprints, ECFP4/6), adjacency matrices, or molecular graphs.
Graph-based learning, particularly through message passing neural networks (MPNNs) and graph
convolutional networks (GCNs), has revolutionised QSAR by allowing models to operate directly on
molecular graphs where atoms represent nodes and bonds represent edges [18]. These methods
inherently capture topological relationships and enable the automatic extraction of higher-order
molecular features.

Moreover, embedding-based representations such as molecular embeddings derived from
unsupervised pretraining (e.g., Mol2Vec, ChemBERTa) have emerged as a new paradigm in QSAR
modelling. These representations map molecules into continuous vector spaces, preserving structural
and functional similarity through contextual learning a concept borrowed from natural language
processing (NLP). Such embeddings have been shown to outperform traditional descriptors in activity
prediction and compound clustering tasks [19]. The choice of descriptors or representations directly
impacts the success of AI-QSAR models. A careful balance between dimensionality, interpretability,
and computational efficiency is required. High-dimensional descriptor spaces can lead to overfitting,
necessitating feature selection or dimensionality reduction techniques such as recursive feature
elimination (RFE), principal component analysis (PCA), or autoencoders [20]. At the same time,
preserving chemically meaningful information is essential to ensure biological relevance and facilitate
mechanistic interpretation.

Overall, descriptor engineering in AI-QSAR has evolved from static, handcrafted features to
dynamic, learned representations that reflect both molecular structure and bioactivity context. This
transition mirrors the broader movement in Al toward self-representing systems capable of discovering
structure—function relationships autonomously, ultimately bridging the gap between
chemoinformatics and molecular intelligence [21].

6.3 Supervised Learning Algorithms for QSAR (SVM, RF, kNN, ANN, GBM)

Supervised learning algorithms form the cornerstone of Al-based QSAR modelling, as they
enable prediction of molecular activity based on labelled datasets. These algorithms are “supervised”
in the sense that models are trained using known input—output pairs, where descriptors (or molecular
representations) serve as inputs and experimentally determined biological activities or affinities
constitute outputs. Over the past two decades, several supervised learning methods ranging from
classical support vector machines to modern ensemble learners have established themselves as
indispensable tools in QSAR workflows [22]. Support Vector Machines (SVMs) represent one of the
earliest and most widely used ML algorithms in QSAR due to their robustness in handling nonlinear,
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high-dimensional data. SVMs function by constructing an optimal hyperplane that maximally separates
data points of different classes (in classification tasks) or by fitting a regression function (in regression
QSAR). Through the use of kernel functions (e.g., radial basis function, polynomial, sigmoid), SVMs can
project molecular data into higher-dimensional feature spaces where nonlinear relationships between
descriptors and activities become linearly separable [23]. Numerous studies have demonstrated SVM
superiority over multiple linear regression for tasks such as inhibitor potency prediction and toxicity
classification [24]. However, SVMs require careful kernel and parameter selection, and their
interpretability remains limited due to abstract feature transformations.

Random Forests (RF), another popular method, operate by constructing an ensemble of
decision trees, each trained on a random subset of data and descriptors. The final prediction is
obtained through averaging (for regression) or majority voting (for classification). RF models have
proven highly effective in QSAR because they are resistant to overfitting, handle noisy or imbalanced
datasets gracefully, and provide intrinsic measures of feature importance that aid interpretability [25].
Moreover, RF’s ability to model nonlinear relationships without extensive parameter tuning makes it
particularly suitable for complex bioactivity datasets, such as those derived from high-throughput
screening (HTS) campaigns [26]. k-Nearest Neighbours (kNN) represents a simple yet powerful
nonparametric algorithm where the activity of a query compound is inferred from the average activity
of its closest molecular neighbours in descriptor space. Although computationally less sophisticated
than other ML algorithms, kNN performs well in local chemical spaces and is often used as a baseline
for more advanced models [27]. Its strength lies in its intuitive alignment with the QSAR principle that
structurally similar molecules exhibit similar activities a concept formally known as the “similar
property principle.” However, its performance declines in sparse or highly diverse datasets where
nearest neighbours may not share true biological similarity.

Artificial Neural Networks (ANNs) extend the idea of nonlinear regression by learning weighted
combinations of descriptors through interconnected layers of neurons. Each neuron applies an
activation function (sigmoid, RelU, tanh) to introduce nonlinearity, allowing ANNs to approximate
virtually any functional relationship between structure and activity. Early applications of ANNs in QSAR
demonstrated improved accuracy over classical models for predicting receptor binding and enzyme
inhibition [28]. Despite this, traditional ANNs required extensive tuning, were prone to overfitting in
small datasets, and offered limited transparency regarding feature contributions.

Gradient Boosting Machines (GBMs) and their derivatives, such as XGBoost, LightGBM, and
CatBoost, represent the latest generation of ensemble learners that iteratively improve model
accuracy by training new trees to correct the residuals of prior ones [29]. These algorithms excel in
handling large, heterogeneous QSAR datasets and often outperform deep neural networks in tabular
descriptor-based tasks. Their interpretability can be enhanced using feature importance and SHAP
value visualisations, making them valuable tools for medicinal chemists who seek both predictive and
mechanistic insights [30]. In comparative benchmarking studies, ensemble methods such as RF and
GBM frequently outperform other algorithms on diverse QSAR datasets, including those predicting
binding affinity, solubility, and toxicity [31]. However, SVMs and ANNs remain competitive for smaller
datasets, while kNN provides simplicity and transparency useful in early screening. Therefore,
algorithm selection depends on dataset size, feature dimensionality, chemical diversity, and the
desired trade-off between accuracy and interpretability [32].
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6.4 Deep Learning Architectures (CNNs, RNNs, Transformers)

Deep learning (DL) has revolutionised the QSAR landscape by enabling models to
automatically learn feature hierarchies from molecular representations, rather than relying solely on
handcrafted descriptors. Unlike traditional ML algorithms that require explicit feature engineering, DL
architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
transformer models extract complex spatial, temporal, and contextual relationships directly from input
data [33]. Convolutional Neural Networks (CNNs), originally developed for image recognition, have
been adapted for chemical data by treating molecular structures as images, graphs, or voxelised 3D
grids. In two-dimensional CNN-QSAR models, molecular fingerprints or adjacency matrices serve as
input “images,” with convolutional filters scanning local patterns corresponding to substructural motifs
or pharmacophoric arrangements [34]. For example, CNNs can detect aromatic rings, hydrogen-bond
donors, or charged groups as hierarchical features relevant to bioactivity. Three-dimensional CNNs
further extend this capability to spatial molecular fields (e.g., electron density or potential maps),
improving predictions of protein—ligand affinity in docking or binding energy estimation [35].

Recurrent Neural Networks (RNNs) are designed to capture sequential dependencies and are
particularly effective when molecular data are expressed as string-based representations such as
SMILES (Simplified Molecular Input Line Entry System). By processing each token sequentially, RNNs
model dependencies across atom—bond sequences, enabling prediction of activity or generation of
novel molecules with specified pharmacophoric patterns [36]. Variants such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks address the vanishing gradient problem
and enhance the modelling of long-range structural dependencies. RNN-based QSAR models have
demonstrated strong performance in predicting cytotoxicity and receptor subtype selectivity, as well
as in inverse design workflows [37]. Transformer-based architectures represent the latest leap in Al-
driven QSAR. Built upon self-attention mechanisms, transformers can learn relationships between all
atoms or tokens in a molecule simultaneously, thereby overcoming the sequential limitations of RNNs
[38]. Models such as ChemBERTa, SMILES-BERT, and MolIT5 apply transfer learning from large-scale
chemical corpora, enabling them to fine-tune molecular embeddings for downstream QSAR tasks with
minimal labelled data. Transformers have shown remarkable generalisation capabilities across diverse
chemical spaces and have achieved state-of-the-art performance in multitask bioactivity prediction
and ADMET modelling [39].

The key advantage of deep learning architectures lies in representation learning the ability to
autonomously identify and weight molecular substructures contributing to bioactivity. This
hierarchical feature discovery allows DL-based QSAR models to capture subtle nonlinearities that
escape traditional descriptor-based methods. Nevertheless, DL models are data-hungry, requiring
large, well-curated datasets to achieve stable convergence and avoid overfitting [40]. Computational
demands are also substantial, as training complex architectures can involve millions of parameters and
necessitate high-performance GPUs. Despite these challenges, DL-based QSAR has achieved notable
successes. For instance, convolutional architectures have outperformed CoMFA and CoMSIA models
in predicting binding affinities of kinase inhibitors, while transformer-based embeddings have
improved multitarget prediction in polypharmacology studies [41]. Furthermore, hybrid models
combining CNNs with graph neural networks (GNNs) are being developed to capture both local
substructure features and global molecular topology [42]. These advances highlight deep learning as
a pivotal driver in the ongoing evolution of AI-QSAR, transforming it from an empirical correlation tool
into a predictive engine of molecular intelligence.
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6.5 Unsupervised and Dimensionality Reduction Approaches (PCA, t-SNE, Autoencoders)

While supervised learning dominates predictive QSAR modelling, unsupervised and
dimensionality reduction techniques play a critical supporting role in data preprocessing, feature
analysis, and chemical space visualisation. These methods are essential for exploring underlying data
structure, identifying clusters of compounds with shared activity patterns, and mitigating the “curse of
dimensionality” inherent in large descriptor sets [43]. Principal Component Analysis (PCA) remains the
most common dimensionality reduction technique in QSAR. PCA transforms high-dimensional
descriptor data into a smaller set of orthogonal components that capture the maximum variance in
the dataset. This not only reduces computational burden but also reveals latent correlations between
descriptors and biological responses. In exploratory QSAR studies, PCA plots are often used to visualise
compound distributions, detect outliers, and assess structural diversity within chemical libraries [44].
PCA can also serve as a preprocessing step to decorrelate features prior to regression or classification,
enhancing the stability of ML algorithms.

t-Distributed Stochastic Neighbour Embedding (t-SNE) provides a nonlinear alternative to PCA
for visualising high-dimensional molecular data. t-SNE maps compounds into a two- or three-
dimensional space while preserving local neighbourhood relationships, effectively revealing activity
clusters or scaffold groupings. This method is particularly useful for inspecting model outputs, verifying
cluster separability between active and inactive compounds, and understanding how AI-QSAR models
perceive chemical similarity [45]. However, t-SNE is computationally intensive and may distort global
structure, requiring careful parameter tuning (e.g., perplexity, learning rate). In recent years,
autoencoders (AEs) unsupervised neural networks designed to reconstruct input data have become
invaluable for learning compressed molecular representations. The encoder network maps input
descriptors or molecular graphs into a lower-dimensional latent space, while the decoder attempts to
reconstruct the original input. The resulting latent embeddings capture essential molecular features in
a continuous vector form, suitable for downstream QSAR, clustering, or molecular generation tasks
[46]. Variational autoencoders (VAEs), an extension of this concept, introduce probabilistic latent
variables, allowing smooth interpolation across chemical space and supporting generative applications
[47].

Autoencoder-derived embeddings have demonstrated superior performance in capturing
subtle structure activity nuances compared to traditional descriptor compression techniques. They
also form the foundation for multitask and transfer learning QSAR frameworks, where the latent space
learned from one dataset is reused to improve model generalisation across related bioactivities [48].
Such integration of unsupervised and supervised learning aligns with the modern philosophy of Al-
QSAR combining exploratory data understanding with predictive intelligence. However, dimensionality
reduction introduces trade-offs between interpretability and abstraction. While reduced
representations facilitate modelling and visualisation, they can obscure chemically meaningful
information if not properly validated. Techniques such as reconstruction error analysis, clustering
validation indices, and cross-domain transfer tests are therefore recommended to ensure that reduced
dimensions preserve essential biological variance [49].

In summary, unsupervised and dimensionality reduction methods underpin the preparatory and
analytical stages of AI-QSAR modelling. They enable data exploration, structure recognition, and
efficient learning, transforming raw molecular descriptors into refined feature spaces that enhance the
accuracy, stability, and interpretability of subsequent predictive algorithms [50].
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6.6 Model Training, Validation, and Applicability Domain Assessment

Model validation remains a central pillar of any QSAR workflow, ensuring that predictions are
statistically reliable, chemically meaningful, and generalisable to unseen compounds. In the context of
Al- and machine learning-based QSAR, where models may possess thousands to millions of
parameters, rigorous validation is indispensable for avoiding overfitting and for establishing scientific
credibility. A robust model not only fits the training data but also performs consistently on independent
test sets drawn from the same or related chemical space [51].

Model Training and Data Partitioning

A typical AI-QSAR modelling process begins with dataset curation, descriptor generation, and
splitting into training, validation, and test sets. The standard practice allocates approximately 70-80%
of data for training, 10-15% for validation (for hyperparameter optimisation), and the remainder for
testing. Stratified sampling is often employed to maintain proportional distributions of active and
inactive compounds, thereby preventing bias in classification models [52]. When datasets are small or
highly imbalanced, resampling techniques such as synthetic minority over-sampling (SMOTE) or
bootstrapping can be applied to enhance diversity and mitigate class imbalance [53].

Cross-Validation Strategies

Cross-validation is a powerful statistical technique to assess model robustness. The most
common variant, k-fold cross-validation, involves partitioning data into k subsets; the model is trained
on k-1 subsets and tested on the remaining one, iterating until every subset has served as a test set.
The resulting performance metrics are averaged to estimate model generalisability. Leave-one-out
cross-validation (LOOCV) provides an extreme form of this approach and is particularly useful for small
datasets, though computationally intensive for large-scale Al models [54]. Nested cross-validation is
recommended for hyperparameter tuning, ensuring that parameter optimisation does not bias final
performance evaluation [55].

Performance Metrics

Model accuracy must be evaluated quantitatively using statistical measures suited to the
prediction task. For regression QSAR models, common metrics include the coefficient of determination
(R?), root-mean-square error (RMSE), mean absolute error (MAE), and predictive squared correlation
coefficient (Q?). In classification tasks, key metrics include accuracy, precision, recall, Fl-score,
Matthews correlation coefficient (MCC), and area under the receiver operating characteristic curve
(ROC-AUC) [56]. For imbalanced datasets, metrics such as precision—recall curves or balanced accuracy
provide more reliable evaluation than overall accuracy alone.

Y-Randomisation and Permutation Testing

To guard against chance correlations, Y-randomisation tests are performed by randomly shuffling
response variables (activities) and retraining the model multiple times. A genuine model should
perform significantly better on unshuffled data than on randomised datasets. This test, often neglected
in Al-based QSAR, remains essential for distinguishing truly predictive relationships from statistical
artefacts [57].
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Applicability Domain (AD)

A well-validated QSAR model must also define its domain of applicability i.e., the chemical space
where its predictions can be considered reliable. Several methods exist for defining AD, including the
leverage approach (based on the Hat matrix), distance-based approaches (e.g., Mahalanobis or
Euclidean distance in descriptor space), and probability density-based metrics derived from model
uncertainty [58]. In ensemble and deep learning frameworks, model confidence can be quantified via
prediction variance across base learners or through Bayesian approximations, providing uncertainty
estimates that guide decision-making in virtual screening and lead optimisation [59].

External Validation

Perhaps the most critical stage in model evaluation is external validation testing the model on
completely independent datasets that were not used during training or parameter optimisation. High
external predictivity (e.g., Q*_ext = 0.6) is generally considered indicative of a robust QSAR model
under Organisation for Economic Co-operation and Development (OECD) guidelines [60]. In Al-based
workflows, transfer learning and time-split validation (training on historical data, testing on more
recent compounds) provide additional insights into model temporal stability and real-world
deployment performance [61]. Ultimately, rigorous training and validation procedures ensure that Al-
QSAR models transition from purely correlative constructs to predictive, decision-support tools that
can withstand regulatory and scientific scrutiny.

6.7 Software Ecosystem and Workflows (RDKit, Scikit-Learn, DeepChem, KNIME, TensorFlow)

Modern AI-QSAR modelling is supported by a rich ecosystem of open-source and commercial
software tools that facilitate descriptor calculation, feature selection, model construction, and
performance evaluation. Integration of these platforms enables the creation of reproducible,
automated pipelines that are essential for scalable drug discovery. The selection of a suitable software
framework depends on data type, computational resources, and intended model complexity [62].
RDKit is the de facto open-source chemoinformatics library for molecular representation and
descriptor generation. It supports computation of more than 200 physicochemical descriptors and
fingerprints, including ECFP, MACCS, and topological torsion fingerprints [63]. RDKit’s Python
integration allows seamless interoperability with machine learning libraries such as Scikit-Learn and
TensorFlow, forming the foundation of custom QSAR workflows. Additionally, RDKit enables molecular
standardisation, substructure searching, and 3D conformer generation, which are critical for ensuring
consistent input data quality.

Scikit-Learn provides an extensive suite of machine learning algorithms for regression,
classification, and clustering. It is ideal for implementing algorithms such as random forests, SVMs, in,
and gradient boosting within descriptor-based QSAR workflows [64]. Its modular design facilitates
reproducible pipelines encompassing preprocessing (scaling, normalisation), feature selection, model
fitting, and validation. Furthermore, Scikit-Learn’s Research and Pipeline functions streamline
hyperparameter optimisation and cross-validation, ensuring best-practice model development.
Depeche, a specialised library for molecular deep learning, extends TensorFlow and Porch capabilities
to chemical data. It provides prebuilt architectures for graph convolutional networks (GCNs), message
passing neural networks (MPNNs), and molecular autoencoders, supporting end-to-end AI-QSAR
model development [65]. Depeche also offers pre-processed benchmark datasets such as Tox21, QM9,
and Molecule Net, which have become standard references for evaluating model performance across
diverse molecular properties.
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KNIME (Konstanz Information Miner) provides a visual, node-based workflow environment
that integrates cheminformatics and machine learning modules, including Riti and Weka extensions.
KNIME is particularly valuable for researchers with limited programming experience, as it allows drag-
and-drop creation of complex QSAR pipelines from data import and descriptor generation to model
validation and visualisation [66]. Its transparency and reproducibility make it suitable for academic and
regulatory contexts alike. TensorFlow and Porch serve as the backbones of deep learning in QSAR.
TensorFlow offers extensive tools for constructing, training, and deploying neural networks, while
Porch provides dynamic graph computation advantageous for research and prototyping. These
frameworks enable the implementation of complex architectures such as CNNs, RNNs, and
transformers for learning from raw molecular graphs or SMILES sequences [67]. Their GPU acceleration
and compatibility with cloud computing platforms allow scalable model training on large chemical
datasets.

In a typical AI-QSAR workflow, Riti generates descriptors, Scikit-Learn handles classical ML
algorithms, and Depeche or TensorFlow facilitates deep learning model construction. Model outputs
are validated, visualised, and optimised within KNIME or Jupiter environments. Together, these tools
form a coherent computational ecosystem enabling end-to-end automation, from raw data ingestion
to validated, deployable QSAR models [68]. Such interoperability between cheminformatics and Al
frameworks reflects the maturity of the CADD field, empowering researchers to move beyond proof-
of-concept models toward industrial-scale predictive systems. Importantly, open-source tools promote
transparency and reproducibility two essential pillars of scientific integrity and regulatory acceptance
in modern drug discovery [69].

6.8 Case Studies and Applications in Drug Discovery

The application of Al-based QSAR models has expanded across all stages of the drug discovery
pipeline, from target identification and hit generation to ADMET prediction and lead optimisation. This
section highlights selected case studies illustrating the practical impact of ML and Al approaches in
modern pharmacological research.

Case Study 1: Predicting Kinase Inhibitor Potency Using Random Forest QSAR

Kinase inhibitors represent a major therapeutic class in oncology and inflammatory diseases.
A study by Zhu et al. utilised random forest-based QSAR models trained on physicochemical and
topological descriptors from the Chambly database to predict inhibitory activity across multiple
kinases [70]. The model achieved an external R? of 0.74 and successfully prioritised novel scaffolds
validated through in vitro assays. Importantly, the use of feature importance metrics revealed key
contributions of hydrophobic surface area and hydrogen bond donor count to potency, providing
mechanistic interpretability often absent in deep learning models.

Case Study 2: Deep Learning QSAR for Toxicity Prediction (Tox21 Challenge)

The Tox21 dataset, comprising over 10,000 compounds with annotated toxicological
endpoints, served as a benchmark for deep learning QSAR. Multi-task deep neural networks
implemented in Depeche outperformed classical methods by jointly learning across related toxicity
endpoints [71]. These models achieved superior ROC-AUC scores (up to 0.89) and exhibited
transferability across assays involving nuclear receptor activation and stress response pathways. The
success of multi-task learning in this context underscored the advantage of leveraging shared
molecular patterns across biological systems.
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Case Study 3: SMILES-Based RNN for Antiviral Activity Prediction

In another landmark study, RNNs trained on SMILES representations of antiviral compounds
demonstrated high predictive accuracy for identifying inhibitors of SARS-CoV-2 main protease [72]. The
RNN model captured sequence-based structural dependencies, enabling accurate classification of
active versus inactive molecules with an Fl-score of 0.87. Furthermore, by using attention-weight
visualisation, the researchers identified substructural motifs contributing most to bioactivity, thereby
enhancing interpretability in an otherwise opaque deep learning model.
Case Study 4: Graph Neural Networks in Multi-Target Drug Discovery

Graph convolutional networks (GCNs) have been used to model polypharmacological
interactions by representing molecules as atom—bond graphs. A study using GCNs to predict binding
affinities across 30 protein targets achieved significant improvements over Coma and SVM baselines
[73]. The network’s ability to share learned representations across targets facilitated identification of
multitarget compounds, a key objective in treating multifactorial diseases such as Alzheimer’s and
cancer.
Case Study 5: Generative QSAR for Lead Optimisation

Recent advances have combined generative models with QSAR feedback loops to design novel
compounds optimised for potency and selectivity. For example, a VAE-based generative QSAR system
trained on dopamine D, receptor ligands generated novel scaffolds with improved docking scores and
ADMET profiles compared to known reference compounds [74]. This approach represents a paradigm
shift from predictive to creative modelling where Al not only analyses but also designs molecules
guided by QSAR principles. Collectively, these case studies illustrate the versatility and transformative
impact of AI-QSAR models in accelerating drug discovery. They demonstrate that ML algorithms are
not mere computational tools but strategic assets that integrate chemistry, biology, and data science
into a unified predictive framework. Beyond efficiency, these systems enhance hypothesis generation,
support rational prioritisation, and reduce experimental attrition rates, embodying the fundamental
ethos of computer-aided drug design [75].

6.9 Challenges, Interpretability and Ethical Considerations

Despite the rapid progress of machine learning and Al-based QSAR methodologies, numerous
challenges persist concerning model transparency, data integrity, and ethical deployment. While Al-
QSAR systems have achieved remarkable predictive accuracy, their growing complexity often results in
reduced interpretability a key obstacle to scientific acceptance and regulatory approval. The dual goals
of performance and explainability are not always aligned, creating a persistent tension in the design of
modern predictive models [76].

Interpretability and Explainable Al (XAl)

Traditional QSAR models offered mechanistic clarity by directly linking specific descriptors to
biological outcomes. In contrast, Al models particularly deep neural networks function as “black
boxes,” making it difficult to rationalise predictions in chemical or pharmacological terms. This lack of
interpretability can hinder trust and reproducibility, especially when model decisions are used to
prioritise compounds for costly experimental validation. To address this, explainable Al (XAl)
techniques such as Shapley Additive explanations (SHAP), Layer-wise Relevance Propagation (LRP), and
Integrated Gradients have been employed to attribute importance scores to input features [77]. These
methods enable visualisation of which molecular substructures most influence predicted activity,
partially restoring the mechanistic transparency of classical QSAR.
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Moreover, methods like counterfactual explanations which identify minimal molecular
modifications that would change a prediction offer intuitive insights for medicinal chemists seeking
structure—activity rationales. These XAl strategies are particularly valuable in regulatory contexts,
where transparency in model rationale is a prerequisite for adoption [78].

Data Quality, Bias, and Reproducibility

The reliability of AI-QSAR models critically depends on the quality of input data. Issues such as
inconsistent molecular annotations, experimental noise, and chemical redundancy can introduce
significant bias, reducing model generalisability. Public databases (e.g., Chambly, PubChem) contain
activity data measured under heterogeneous assay conditions, often without standardised protocols,
leading to dataset imbalance or conflicting annotations [79]. Furthermore, data bias such as
overrepresentation of certain scaffolds or physicochemical property ranges can result in models that
perform well on training data but fail catastrophically when confronted with structurally novel
compounds [80]. To mitigate these risks, rigorous data curation and standardisation are essential. This
includes removal of duplicates, outlier detection, canonicalization of SMILES strings, and normalisation
of bioactivity units. Adherence to FAIR (Findable, Accessible, Interoperable, and Reusable) principles
ensures data provenance and reproducibility, while continuous integration of experimental feedback
improves model reliability over time [81].

Algorithmic Bias and Ethical Responsibility

Al models are only as unbiased as the data on which they are trained. If a QSAR model is
developed using datasets biased toward specific chemical classes, it may inadvertently prioritise
certain molecular scaffolds while overlooking others, potentially reinforcing existing research biases.
Such algorithmic bias can distort drug discovery pipelines by skewing chemical diversity and limiting
innovation [82]. Furthermore, excessive reliance on automated Al systems without adequate human
oversight raises ethical concerns about accountability, particularly in safety-critical applications such
as toxicity prediction. Transparency in algorithm selection, model validation, and dataset composition
must therefore become standard practice. Recent initiatives advocate for model cards and data sheets
documenting the origin, preprocessing steps, and limitations of training data, similar to ethical
guidelines in other Al domains [83]. Such documentation supports responsible innovation and fosters
trust between computational scientists, medicinal chemists, and regulatory authorities.

Computational and Environmental Considerations

Training large deep learning models for QSAR involves significant computational resources,
raising sustainability concerns due to energy consumption and carbon footprint. Green computing
strategies such as transfer learning, parameter-efficient architectures, and cloud-based shared
resources can mitigate environmental impact while maintaining model accuracy [84]. As
computational chemistry moves toward large-scale Al adoption, sustainability should be integrated
into best-practice guidelines alongside accuracy and interpretability. In summary, the ethical landscape
of AI-QSAR extends beyond model performance. It encompasses transparency, fairness,
environmental sustainability, and the responsible use of predictive models to ensure that
computational acceleration in drug discovery aligns with scientific integrity and societal benefit [85].

70



Table 6.1 Comparative Overview of Machine Learning and Al Algorithms Used in QSAR Modelling

Algorithm / Learning Strengths Limitations Typical QSAR
Model Type Applications
Multiple Statistical High Fails for nonlinear  Classical QSAR with
Linear (linear) interpretability, data physicochemical
Regression fast computation descriptors
(MLR)
Support Supervised Handles nonlinear  Sensitive to kernel Activity prediction,
Vector relationships via choice, limited toxicity classification
Machine kernels, robust to interpretability
(SVM) overfitting
Random Supervised Robust, May bias toward HTS datasets, toxicity,
Forest (RF) Ensemble  interpretable via dominant solubility QSAR

feature features, limited

importance, extrapolation

handles large

descriptor sets
Gradient Supervised High accuracy, Sensitive to Regression/classification
Boosting Ensemble  efficient hyperparameters, for affinity prediction
(Boost, Light) computation, prone to

interpretable via overfitting on

SHAP noise
k-Nearest Instance- Intuitive, minimal Inefficient for Similarity-based
Neighbour based training large datasets, screening
(in) lacks

generalisation

Artificial Supervised Capture complex Prone to Bioactivity and receptor-
Neural nonlinearities overfitting, limited binding QSAR
Networks explainability
(ANNs)
Convolutional Deep Automatic feature  High data and 3D-QSAR, protein—ligand
Neural Learning extraction from GPU demand affinity
Networks graphs/images
(CNNs)
Recurrent Deep Captures Vanishing SMILES-based QSAR,
Neural Learning sequential/SMILES  gradient, long generative design
Networks data training time
(RNNSs,
LSTMs)
Transformer Deep Contextual Large Multitarget prediction,
Models Learning learning, computational ADMET estimation
(Chambert, (Self- transferability, cost
MolT5) Attention)  multitask capacity
Graph Neural Deep Directly learn from  Complex Structure-based QSAR,
Networks Learning molecular implementation, multitarget
(GNNs, (Graph- topology, requires large pharmacology
MPNNs) based) interpretable data

attention
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Figure 6.1 Al-Driven QSAR Workflow and Algorithmic Landscape

6.10 Future Directions in Al-Enhanced QSAR

The future of QSAR lies at the intersection of data science, molecular modelling, and artificial
intelligence. The ongoing transformation from statistical correlations to autonomous molecular
intelligence suggests that future QSAR systems will be capable of continuous learning, cross-domain
integration, and hypothesis generation in real time. This evolution will be driven by several converging
technological and conceptual trends.

Integration of Graph Neural Networks and Multimodal Learning

Next-generation QSAR frameworks will increasingly rely on graph neural networks (GNNs) and
message passing neural networks (MPNNs) that directly process molecular graphs. These models
capture atom-level dependencies and topological information with unprecedented fidelity, offering
interpretability through attention-based mechanisms that highlight substructures contributing to
predicted bioactivity [86]. Moreover, multimodal learning approaches that combine structural, omics,
and textual data will enable the simultaneous modelling of chemical, biological, and pharmacological
features, bridging the gap between molecular properties and systems pharmacology [87].

Federated and Transfer Learning

Data privacy and proprietary constraints often prevent pharmaceutical companies from
sharing bioactivity datasets. Federated learning offers a potential solution by enabling collaborative
model training across distributed datasets without exposing confidential data. In parallel, transfer
learning allows pretrained models (e.g., Chambert, MolT5) to be fine-tuned for specific targets or
tasks, significantly reducing the need for large labelled datasets [88]. These methods will democratise
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access to high-performance AI-QSAR tools and enhance knowledge sharing across the scientific
community.

Generative Al and Inverse QSAR

Emerging generative QSAR frameworks integrate molecular design with predictive feedback
loops, enabling de novo generation of molecules optimised for potency, selectivity, and ADMET
profiles. Variational autoencoders, generative adversarial networks (GANs), and diffusion models have
already demonstrated the ability to explore vast chemical spaces efficiently [89]. When coupled with
QSAR-guided scoring functions, these systems evolve into inverse design engines capable of
autonomously proposing synthesizable, high-affinity candidates, thus closing the loop between
prediction and creation.

Explainable and Causally Informed QSAR

Future QSAR research will move beyond correlation-based learning toward causally informed
models that identify mechanistic determinants of bioactivity. By integrating causal inference
frameworks and explainable Al, QSAR models will gain the ability to distinguish genuine cause—effect
relationships from spurious correlations, increasing their utility in hypothesis-driven drug design [90].
This paradigm shift will also support regulatory confidence, as causally interpretable predictions align
with pharmacological reasoning.

Quantum and Hybrid Computing for Molecular Learning

Quantum computing promises to revolutionise molecular simulations and descriptor
generation. Hybrid quantum—classical QSAR approaches, where quantum subroutines compute
electronic structure properties embedded into classical ML pipelines, are already under exploration
[91]. These hybrid systems may dramatically enhance the precision of molecular property predictions
while reducing computational bottlenecks in feature calculation.

Towards Autonomous, Closed-Loop Discovery

Ultimately, Al-enhanced QSAR will evolve into autonomous discovery systems integrated with
robotic synthesis and high-throughput experimentation. Such systems will operate in closed loops
iteratively generating, predicting, synthesising, and validating compounds thereby realising the vision
of self-driving laboratories in pharmaceutical research [92]. These platforms will not replace human
expertise but will amplify it, allowing chemists to focus on strategy, innovation, and interpretation. In
essence, the next generation of QSAR will be dynamic, data-centric, and ethically aligned. Its
convergence with Al, quantum computation, and automation heralds an era of unprecedented
predictive power and translational potential, reaffirming QSAR’s enduring role as the quantitative
heart of computer-aided drug design [93].

6.11 CONCLUSION

Machine learning and Al-based QSAR have transformed the paradigm of computational drug
design by moving beyond static descriptor correlations toward dynamic, data-driven molecular
intelligence. Through the integration of algorithms such as SVM, RF, GBM, and neural architectures
including CNNs, RNNs, and transformers modern QSAR models capture nonlinear, multidimensional
interactions underlying chemical-biological relationships with remarkable precision. A I-QSAR
frameworks now serve as indispensable tools across all phases of the discovery pipeline: early hit
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identification, ADMET prediction, off-target analysis, and lead optimisation. The integration of
advanced validation methods, applicability-domain mapping, and explainable Al ensures that
predictions are scientifically credible and transparent. The convergence of chemoinformatics software
RDKit, Scikit-Learn, DeepChem, KNIME, TensorFlow has enabled reproducible, scalable, and
automated workflows accessible to both academia and industry.

However, this technological evolution introduces new responsibilities. Data quality,
algorithmic bias, and model interpretability remain central challenges. Ethical and environmental
considerations such as transparency, fairness, and computational sustainability must guide future
implementations. The emergence of federated learning, graph neural networks, and generative QSAR
architectures signals a shift from predictive to creative intelligence, where Al not only forecasts activity
but designs novel, viable molecules within defined chemical and biological constraints.
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