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Abstract: Quan!ta!ve structure ac!vity rela!onship (QSAR) modelling has evolved from classical 

linear regression to sophis!cated ar!ficial intelligence (AI) and machine learning (ML) systems capable 

of lear ning complex, nonlinear pa�erns between molecular structure and biological ac!vity. The 

integra!on of AI has expanded the predic!ve and interpreta!ve scope of QSAR beyond tradi!onal 

descriptor ac!vity correla!ons toward autonomous, data-driven discovery. This chapter explores the 

theore!cal founda!ons and prac!cal implementa!on of AI-based QSAR modelling, detailing how 

algorithms such as support vector machines, random forests, gradient boos!ng, ar!ficial neural 

networks, and deep learning architectures (CNNs, RNNs, transformers) have redefined molecular 

predic!on paradigms. It examines the transforma!on of molecular descriptors into machine-readable 

representa!ons, discusses feature selec!on, data preprocessing, and dimensionality reduc!on, and 

analyses model evalua!on through rigorous valida!on metrics and applicability domain frameworks. 

Emphasis is placed on reproducibility, interpretability, and ethical considera!ons in AI-driven drug 

design. Case studies and so:ware workflows (e.g., RDKit, Scikit-Learn, KNIME, DeepChem, TensorFlow) 

are included to demonstrate real-world applica!ons in pharmacological target predic!on, ADMET 

es!ma!on, and lead op!misa!on. Finally, the chapter outlines the emerging fron!er of explainable AI 

and genera!ve QSAR, emphasising how hybrid approaches combining symbolic reasoning, graph 

neural networks, and transfer learning are shaping the next genera!on of predic!ve models in 

computa!onal drug discovery. 
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6.0 INTRODUCTION  

AI and Machine Learning in QSAR 

The development of ar!ficial intelligence-based quan!ta!ve structure–ac!vity rela!onship 

(AI–QSAR) models marks a significant paradigm shi: in computa!onal drug design. Historically, QSAR 

emerged as a sta!s!cal method linking molecular descriptors numerical representa!ons of chemical 

structure to biological ac!vity, relying on linear regression or par!al least squares (PLS) analysis. While 

these classical methods offered interpretability, they were constrained by linear assump!ons and 

limited capacity to capture complex, nonlinear interac!ons inherent in molecular biology and 

pharmacodynamics [1]. The increasing availability of large-scale chemical and biological datasets, 

coupled with exponen!al advances in computa!onal power, has catalysed the integra!on of AI and 

ML into QSAR pipelines. Machine learning techniques are designed to detect intricate rela!onships 

between input features (descriptors or fingerprints) and output responses (ac!vi!es or affini!es) 

without explicit programming. AI-based QSAR leverages this ability to model nonlineari!es and 

interac!ons among molecular features that tradi!onal sta!s!cal methods o:en overlook [2]. Unlike 

classical QSAR, which typically assumes uniform descriptor–ac!vity rela!onships, ML models learn 

context-specific dependencies that can vary across chemical series or target classes. Algorithms such 

as random forests (RF), support vector machines (SVMs), k-nearest neighbours (kNN), and ensemble 

boos!ng methods like gradient boos!ng machines (GBMs) have shown remarkable performance 

improvements in classifica!on and regression tasks relevant to drug design [3]. 

The broader incorpora!on of deep learning par!cularly convolu!onal neural networks (CNNs) 

and recurrent neural networks (RNNs) has further advanced QSAR by enabling direct learning from 

raw molecular graphs, images, or sequences. These architectures eliminate the need for predefined 

descriptors, instead deriving hierarchical representa!ons that encode spa!al and electronic 

informa!on directly from molecular topology [4]. Moreover, AI–QSAR supports mul!task learning, 

allowing models to predict mul!ple pharmacological proper!es simultaneously, which aligns with the 

polypharmacological nature of most therapeu!c agents. The implica!ons of this transforma!on are 

profound. AI–QSAR systems now underpin early-phase screening pipelines, ADMET predic!on, toxicity 

profiling, and even de novo molecular genera!on. They also enhance reproducibility and scalability by 

automa!ng key steps such as feature selec!on, data cleaning, and hyperparameter op!misa!on. 

However, challenges persist in ensuring interpretability, data quality, and generalisa!on to novel 

chemical spaces issues that require careful considera!on when deploying AI models in regulatory and 

transla!onal contexts [5]. 

Ul!mately, AI–QSAR represents a synthesis of chemoinforma!cs, sta!s!cal learning, and 

molecular science. It embodies the transi!on from descrip!ve to predic!ve modelling in computer-

aided drug design (CADD), where models are no longer sta!c tools but adap!ve systems capable of 

learning from diverse, high-dimensional data to generate ac!onable chemical insights [6]. 

 

6.1 Evolu"on from Classical to AI-Driven QSAR 

The conceptual roots of QSAR lie in Hansch and Fujita’s seminal work during the 1960s, which 

formalised the rela!onship between chemical structure and biological ac!vity through linear free 

energy rela!onships (LFERs). Early models such as the Hansch equa!on u!lised physicochemical 

parameters like hydrophobicity (logP), electronic (σ), and steric constants (Es) to correlate with 

biological endpoints [7]. This classical QSAR paradigm was characterised by its interpretability and 

simplicity but suffered from inherent limita!ons par!cularly its assump!on of linearity and inability to 

capture higher-order feature interac!ons or molecular flexibility. As the dimensionality of available 
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data expanded, mul!variate techniques such as principal component analysis (PCA), mul!ple linear 

regression (MLR), and par!al least squares (PLS) regression became standard tools for construc!ng 

mul!dimensional QSAR models. However, even these enhanced frameworks struggled to model 

complex nonlinear structure–ac!vity rela!onships, especially when applied to diverse chemical 

scaffolds or mul!target datasets [8]. The advent of machine learning in the early 2000s provided a 

transforma!ve solu!on by introducing algorithms that could generalise from data without 

presupposing linear behaviour. 

Support vector machines, random forests, and ar!ficial neural networks became key enablers 

of nonlinear QSAR. These methods improved predic!ve accuracy by accommoda!ng intricate feature 

interac!ons and by learning decision boundaries directly from data. For example, SVM-based QSAR 

models u!lise kernel func!ons to map input data into higher-dimensional feature spaces, allowing the 

discovery of complex ac!vity trends even in small datasets [9]. Similarly, ensemble algorithms such as 

RF and GBM combine mul!ple weak learners to reduce variance and bias, offering robustness against 

overfiOng a common problem in high-dimensional QSAR data. The transi!on from tradi!onal to AI-

driven QSAR has been further accelerated by the integra!on of deep learning architectures. Deep 

neural networks (DNNs) can automa!cally learn hierarchical molecular features, star!ng from atomic 

connec!vity and extending to abstract representa!ons of pharmacophoric or conforma!onal 

proper!es [10]. This capacity has allowed researchers to bypass the need for manual descriptor 

engineering, which historically cons!tuted one of the most !me-consuming aspects of QSAR 

development. 

Addi!onally, the integra!on of AI with chemoinforma!cs databases such as ChEMBL, 

PubChem, and ZINC has facilitated large-scale model training using millions of compounds with 

annotated bioac!vi!es. This data-driven paradigm aligns with the principles of modern CADD, where 

the goal is to leverage extensive molecular datasets to predict novel, potent, and safe chemical en!!es 

[11]. The resul!ng AI–QSAR frameworks not only predict quan!ta!ve ac!vi!es but also enable 

classifica!on tasks such as target iden!fica!on, toxicity profiling, and off-target predic!on. Yet, despite 

these advances, interpretability remains a key concern. Classical QSAR’s strength lay in its mechanis!c 

clarity, while AI models o:en behave as “black boxes.” Recent research has thus shi:ed towards 

explainable AI (XAI) methods, such as SHapley Addi!ve exPlana!ons (SHAP) and Layer-wise Relevance 

Propaga!on (LRP), which aim to visualise feature contribu!ons and restore interpretability without 

compromising predic!ve power [12]. 

The evolu!onary trajectory of QSAR can therefore be viewed as a con!nuum from linear 

regression-based models to adap!ve, mul!-layered AI systems capable of self-learning. Each stage 

reflects a balance between interpretability and complexity, with the ul!mate goal of producing 

reliable, generalisable models that guide molecular design with both precision and insight [13]. 

 

6.2 Molecular Descriptors and Feature Representa"on in ML QSAR 

Descriptors are the founda!on of all QSAR models, ac!ng as the mathema!cal bridge between 

molecular structure and biological ac!vity. In AI-based QSAR, descriptor engineering and 

representa!on learning play central roles in determining model performance, generalisa!on, and 

interpretability. Molecular descriptors can be broadly categorised into physicochemical, topological, 

geometrical, quantum mechanical, and hybrid features, each capturing dis!nct structural or energe!c 

a�ributes of molecules [14]. Physicochemical descriptors include classical variables such as molecular 

weight, logP, hydrogen bond donor/acceptor counts, polar surface area, and rotatable bonds. These 

features describe the general drug-likeness of compounds and are o:en used in models predic!ng 
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ADMET or pharmacokine!c profiles. Topological descriptors, such as Wiener and Balaban indices, 

encode molecular connec!vity and shape without requiring explicit three-dimensional coordinates. 

These are par!cularly useful in early-stage screening where only 2D structures are available [15]. 

In contrast, geometrical and 3D descriptors capture spa!al configura!ons, atomic distances, 

and conforma!onal flexibility, enabling more accurate modelling of receptor–ligand interac!ons. 

Examples include WHIM (Weighted Holis!c Invariant Molecular) descriptors and GRIND (Grid-

Independent Descriptors), which are essen!al for capturing steric and electrosta!c complementarity 

in high-dimensional QSAR [16]. Quantum chemical descriptors, derived from density func!onal theory 

(DFT) calcula!ons, quan!fy electronic parameters such as fron!er orbital energies (HOMO/LUMO), 

dipole moment, and molecular electrosta!c poten!al, thereby linking electronic proper!es to 

bioac!vity [17]. With the rise of ML and deep learning, the focus has shi:ed from manually engineered 

descriptors to data-driven molecular representa!ons. In these models, molecules are encoded as 

bitstrings (e.g., extended connec!vity fingerprints, ECFP4/6), adjacency matrices, or molecular graphs. 

Graph-based learning, par!cularly through message passing neural networks (MPNNs) and graph 

convolu!onal networks (GCNs), has revolu!onised QSAR by allowing models to operate directly on 

molecular graphs where atoms represent nodes and bonds represent edges [18]. These methods 

inherently capture topological rela!onships and enable the automa!c extrac!on of higher-order 

molecular features. 

Moreover, embedding-based representa!ons such as molecular embeddings derived from 

unsupervised pretraining (e.g., Mol2Vec, ChemBERTa) have emerged as a new paradigm in QSAR 

modelling. These representa!ons map molecules into con!nuous vector spaces, preserving structural 

and func!onal similarity through contextual learning a concept borrowed from natural language 

processing (NLP). Such embeddings have been shown to outperform tradi!onal descriptors in ac!vity 

predic!on and compound clustering tasks [19]. The choice of descriptors or representa!ons directly 

impacts the success of AI–QSAR models. A careful balance between dimensionality, interpretability, 

and computa!onal efficiency is required. High-dimensional descriptor spaces can lead to overfiOng, 

necessita!ng feature selec!on or dimensionality reduc!on techniques such as recursive feature 

elimina!on (RFE), principal component analysis (PCA), or autoencoders [20]. At the same !me, 

preserving chemically meaningful informa!on is essen!al to ensure biological relevance and facilitate 

mechanis!c interpreta!on. 

Overall, descriptor engineering in AI–QSAR has evolved from sta!c, handcra:ed features to 

dynamic, learned representa!ons that reflect both molecular structure and bioac!vity context. This 

transi!on mirrors the broader movement in AI toward self-represen!ng systems capable of discovering 

structure–func!on rela!onships autonomously, ul!mately bridging the gap between 

chemoinforma!cs and molecular intelligence [21]. 

 

6.3 Supervised Learning Algorithms for QSAR (SVM, RF, kNN, ANN, GBM) 

Supervised learning algorithms form the cornerstone of AI-based QSAR modelling, as they 

enable predic!on of molecular ac!vity based on labelled datasets. These algorithms are “supervised” 

in the sense that models are trained using known input–output pairs, where descriptors (or molecular 

representa!ons) serve as inputs and experimentally determined biological ac!vi!es or affini!es 

cons!tute outputs. Over the past two decades, several supervised learning methods ranging from 

classical support vector machines to modern ensemble learners have established themselves as 

indispensable tools in QSAR workflows [22]. Support Vector Machines (SVMs) represent one of the 

earliest and most widely used ML algorithms in QSAR due to their robustness in handling nonlinear, 
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high-dimensional data. SVMs func!on by construc!ng an op!mal hyperplane that maximally separates 

data points of different classes (in classifica!on tasks) or by fiOng a regression func!on (in regression 

QSAR). Through the use of kernel func!ons (e.g., radial basis func!on, polynomial, sigmoid), SVMs can 

project molecular data into higher-dimensional feature spaces where nonlinear rela!onships between 

descriptors and ac!vi!es become linearly separable [23]. Numerous studies have demonstrated SVM 

superiority over mul!ple linear regression for tasks such as inhibitor potency predic!on and toxicity 

classifica!on [24]. However, SVMs require careful kernel and parameter selec!on, and their 

interpretability remains limited due to abstract feature transforma!ons. 

Random Forests (RF), another popular method, operate by construc!ng an ensemble of 

decision trees, each trained on a random subset of data and descriptors. The final predic!on is 

obtained through averaging (for regression) or majority vo!ng (for classifica!on). RF models have 

proven highly effec!ve in QSAR because they are resistant to overfiOng, handle noisy or imbalanced 

datasets gracefully, and provide intrinsic measures of feature importance that aid interpretability [25]. 

Moreover, RF’s ability to model nonlinear rela!onships without extensive parameter tuning makes it 

par!cularly suitable for complex bioac!vity datasets, such as those derived from high-throughput 

screening (HTS) campaigns [26]. k-Nearest Neighbours (kNN) represents a simple yet powerful 

nonparametric algorithm where the ac!vity of a query compound is inferred from the average ac!vity 

of its closest molecular neighbours in descriptor space. Although computa!onally less sophis!cated 

than other ML algorithms, kNN performs well in local chemical spaces and is o:en used as a baseline 

for more advanced models [27]. Its strength lies in its intui!ve alignment with the QSAR principle that 

structurally similar molecules exhibit similar ac!vi!es a concept formally known as the “similar 

property principle.” However, its performance declines in sparse or highly diverse datasets where 

nearest neighbours may not share true biological similarity. 

Ar!ficial Neural Networks (ANNs) extend the idea of nonlinear regression by learning weighted 

combina!ons of descriptors through interconnected layers of neurons. Each neuron applies an 

ac!va!on func!on (sigmoid, ReLU, tanh) to introduce nonlinearity, allowing ANNs to approximate 

virtually any func!onal rela!onship between structure and ac!vity. Early applica!ons of ANNs in QSAR 

demonstrated improved accuracy over classical models for predic!ng receptor binding and enzyme 

inhibi!on [28]. Despite this, tradi!onal ANNs required extensive tuning, were prone to overfiOng in 

small datasets, and offered limited transparency regarding feature contribu!ons. 

Gradient Boos!ng Machines (GBMs) and their deriva!ves, such as XGBoost, LightGBM, and 

CatBoost, represent the latest genera!on of ensemble learners that itera!vely improve model 

accuracy by training new trees to correct the residuals of prior ones [29]. These algorithms excel in 

handling large, heterogeneous QSAR datasets and o:en outperform deep neural networks in tabular 

descriptor-based tasks. Their interpretability can be enhanced using feature importance and SHAP 

value visualisa!ons, making them valuable tools for medicinal chemists who seek both predic!ve and 

mechanis!c insights [30]. In compara!ve benchmarking studies, ensemble methods such as RF and 

GBM frequently outperform other algorithms on diverse QSAR datasets, including those predic!ng 

binding affinity, solubility, and toxicity [31]. However, SVMs and ANNs remain compe!!ve for smaller 

datasets, while kNN provides simplicity and transparency useful in early screening. Therefore, 

algorithm selec!on depends on dataset size, feature dimensionality, chemical diversity, and the 

desired trade-off between accuracy and interpretability [32]. 
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6.4 Deep Learning Architectures (CNNs, RNNs, Transformers) 

Deep learning (DL) has revolu!onised the QSAR landscape by enabling models to 

automa!cally learn feature hierarchies from molecular representa!ons, rather than relying solely on 

handcra:ed descriptors. Unlike tradi!onal ML algorithms that require explicit feature engineering, DL 

architectures such as convolu!onal neural networks (CNNs), recurrent neural networks (RNNs), and 

transformer models extract complex spa!al, temporal, and contextual rela!onships directly from input 

data [33]. Convolu!onal Neural Networks (CNNs), originally developed for image recogni!on, have 

been adapted for chemical data by trea!ng molecular structures as images, graphs, or voxelised 3D 

grids. In two-dimensional CNN-QSAR models, molecular fingerprints or adjacency matrices serve as 

input “images,” with convolu!onal filters scanning local pa�erns corresponding to substructural mo!fs 

or pharmacophoric arrangements [34]. For example, CNNs can detect aroma!c rings, hydrogen-bond 

donors, or charged groups as hierarchical features relevant to bioac!vity. Three-dimensional CNNs 

further extend this capability to spa!al molecular fields (e.g., electron density or poten!al maps), 

improving predic!ons of protein–ligand affinity in docking or binding energy es!ma!on [35]. 

Recurrent Neural Networks (RNNs) are designed to capture sequen!al dependencies and are 

par!cularly effec!ve when molecular data are expressed as string-based representa!ons such as 

SMILES (Simplified Molecular Input Line Entry System). By processing each token sequen!ally, RNNs 

model dependencies across atom–bond sequences, enabling predic!on of ac!vity or genera!on of 

novel molecules with specified pharmacophoric pa�erns [36]. Variants such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) networks address the vanishing gradient problem 

and enhance the modelling of long-range structural dependencies. RNN-based QSAR models have 

demonstrated strong performance in predic!ng cytotoxicity and receptor subtype selec!vity, as well 

as in inverse design workflows [37]. Transformer-based architectures represent the latest leap in AI-

driven QSAR. Built upon self-a�en!on mechanisms, transformers can learn rela!onships between all 

atoms or tokens in a molecule simultaneously, thereby overcoming the sequen!al limita!ons of RNNs 

[38]. Models such as ChemBERTa, SMILES-BERT, and MolT5 apply transfer learning from large-scale 

chemical corpora, enabling them to fine-tune molecular embeddings for downstream QSAR tasks with 

minimal labelled data. Transformers have shown remarkable generalisa!on capabili!es across diverse 

chemical spaces and have achieved state-of-the-art performance in mul!task bioac!vity predic!on 

and ADMET modelling [39]. 

The key advantage of deep learning architectures lies in representa!on learning the ability to 

autonomously iden!fy and weight molecular substructures contribu!ng to bioac!vity. This 

hierarchical feature discovery allows DL-based QSAR models to capture subtle nonlineari!es that 

escape tradi!onal descriptor-based methods. Nevertheless, DL models are data-hungry, requiring 

large, well-curated datasets to achieve stable convergence and avoid overfiOng [40]. Computa!onal 

demands are also substan!al, as training complex architectures can involve millions of parameters and 

necessitate high-performance GPUs. Despite these challenges, DL-based QSAR has achieved notable 

successes. For instance, convolu!onal architectures have outperformed CoMFA and CoMSIA models 

in predic!ng binding affini!es of kinase inhibitors, while transformer-based embeddings have 

improved mul!target predic!on in polypharmacology studies [41]. Furthermore, hybrid models 

combining CNNs with graph neural networks (GNNs) are being developed to capture both local 

substructure features and global molecular topology [42]. These advances highlight deep learning as 

a pivotal driver in the ongoing evolu!on of AI-QSAR, transforming it from an empirical correla!on tool 

into a predic!ve engine of molecular intelligence. 
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6.5 Unsupervised and Dimensionality Reduc"on Approaches (PCA, t-SNE, Autoencoders) 

While supervised learning dominates predic!ve QSAR modelling, unsupervised and 

dimensionality reduc!on techniques play a cri!cal suppor!ng role in data preprocessing, feature 

analysis, and chemical space visualisa!on. These methods are essen!al for exploring underlying data 

structure, iden!fying clusters of compounds with shared ac!vity pa�erns, and mi!ga!ng the “curse of 

dimensionality” inherent in large descriptor sets [43]. Principal Component Analysis (PCA) remains the 

most common dimensionality reduc!on technique in QSAR. PCA transforms high-dimensional 

descriptor data into a smaller set of orthogonal components that capture the maximum variance in 

the dataset. This not only reduces computa!onal burden but also reveals latent correla!ons between 

descriptors and biological responses. In exploratory QSAR studies, PCA plots are o:en used to visualise 

compound distribu!ons, detect outliers, and assess structural diversity within chemical libraries [44]. 

PCA can also serve as a preprocessing step to decorrelate features prior to regression or classifica!on, 

enhancing the stability of ML algorithms. 

t-Distributed Stochas!c Neighbour Embedding (t-SNE) provides a nonlinear alterna!ve to PCA 

for visualising high-dimensional molecular data. t-SNE maps compounds into a two- or three-

dimensional space while preserving local neighbourhood rela!onships, effec!vely revealing ac!vity 

clusters or scaffold groupings. This method is par!cularly useful for inspec!ng model outputs, verifying 

cluster separability between ac!ve and inac!ve compounds, and understanding how AI-QSAR models 

perceive chemical similarity [45]. However, t-SNE is computa!onally intensive and may distort global 

structure, requiring careful parameter tuning (e.g., perplexity, learning rate). In recent years, 

autoencoders (AEs) unsupervised neural networks designed to reconstruct input data have become 

invaluable for learning compressed molecular representa!ons. The encoder network maps input 

descriptors or molecular graphs into a lower-dimensional latent space, while the decoder a�empts to 

reconstruct the original input. The resul!ng latent embeddings capture essen!al molecular features in 

a con!nuous vector form, suitable for downstream QSAR, clustering, or molecular genera!on tasks 

[46]. Varia!onal autoencoders (VAEs), an extension of this concept, introduce probabilis!c latent 

variables, allowing smooth interpola!on across chemical space and suppor!ng genera!ve applica!ons 

[47]. 

Autoencoder-derived embeddings have demonstrated superior performance in capturing 

subtle structure ac!vity nuances compared to tradi!onal descriptor compression techniques. They 

also form the founda!on for mul!task and transfer learning QSAR frameworks, where the latent space 

learned from one dataset is reused to improve model generalisa!on across related bioac!vi!es [48]. 

Such integra!on of unsupervised and supervised learning aligns with the modern philosophy of AI-

QSAR combining exploratory data understanding with predic!ve intelligence. However, dimensionality 

reduc!on introduces trade-offs between interpretability and abstrac!on. While reduced 

representa!ons facilitate modelling and visualisa!on, they can obscure chemically meaningful 

informa!on if not properly validated. Techniques such as reconstruc!on error analysis, clustering 

valida!on indices, and cross-domain transfer tests are therefore recommended to ensure that reduced 

dimensions preserve essen!al biological variance [49]. 

In summary, unsupervised and dimensionality reduc!on methods underpin the preparatory and 

analy!cal stages of AI-QSAR modelling. They enable data explora!on, structure recogni!on, and 

efficient learning, transforming raw molecular descriptors into refined feature spaces that enhance the 

accuracy, stability, and interpretability of subsequent predic!ve algorithms [50]. 
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6.6 Model Training, Valida"on, and Applicability Domain Assessment 

Model valida!on remains a central pillar of any QSAR workflow, ensuring that predic!ons are 

sta!s!cally reliable, chemically meaningful, and generalisable to unseen compounds. In the context of 

AI- and machine learning-based QSAR, where models may possess thousands to millions of 

parameters, rigorous valida!on is indispensable for avoiding overfiOng and for establishing scien!fic 

credibility. A robust model not only fits the training data but also performs consistently on independent 

test sets drawn from the same or related chemical space [51]. 

 

Model Training and Data Par""oning 

A typical AI-QSAR modelling process begins with dataset cura!on, descriptor genera!on, and 

spliOng into training, valida!on, and test sets. The standard prac!ce allocates approximately 70–80% 

of data for training, 10–15% for valida!on (for hyperparameter op!misa!on), and the remainder for 

tes!ng. Stra!fied sampling is o:en employed to maintain propor!onal distribu!ons of ac!ve and 

inac!ve compounds, thereby preven!ng bias in classifica!on models [52]. When datasets are small or 

highly imbalanced, resampling techniques such as synthe!c minority over-sampling (SMOTE) or 

bootstrapping can be applied to enhance diversity and mi!gate class imbalance [53]. 

 

Cross-Valida"on Strategies 

Cross-valida!on is a powerful sta!s!cal technique to assess model robustness. The most 

common variant, k-fold cross-valida!on, involves par!!oning data into k subsets; the model is trained 

on k–1 subsets and tested on the remaining one, itera!ng un!l every subset has served as a test set. 

The resul!ng performance metrics are averaged to es!mate model generalisability. Leave-one-out 

cross-valida!on (LOOCV) provides an extreme form of this approach and is par!cularly useful for small 

datasets, though computa!onally intensive for large-scale AI models [54]. Nested cross-valida!on is 

recommended for hyperparameter tuning, ensuring that parameter op!misa!on does not bias final 

performance evalua!on [55]. 

 

Performance Metrics 

Model accuracy must be evaluated quan!ta!vely using sta!s!cal measures suited to the 

predic!on task. For regression QSAR models, common metrics include the coefficient of determina!on 

(R²), root-mean-square error (RMSE), mean absolute error (MAE), and predic!ve squared correla!on 

coefficient (Q²). In classifica!on tasks, key metrics include accuracy, precision, recall, F1-score, 

Ma�hews correla!on coefficient (MCC), and area under the receiver opera!ng characteris!c curve 

(ROC-AUC) [56]. For imbalanced datasets, metrics such as precision–recall curves or balanced accuracy 

provide more reliable evalua!on than overall accuracy alone. 

 

Y-Randomisa"on and Permuta"on Tes"ng 

To guard against chance correla!ons, Y-randomisa!on tests are performed by randomly shuffling 

response variables (ac!vi!es) and retraining the model mul!ple !mes. A genuine model should 

perform significantly be�er on unshuffled data than on randomised datasets. This test, o:en neglected 

in AI-based QSAR, remains essen!al for dis!nguishing truly predic!ve rela!onships from sta!s!cal 

artefacts [57]. 
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Applicability Domain (AD) 

A well-validated QSAR model must also define its domain of applicability i.e., the chemical space 

where its predic!ons can be considered reliable. Several methods exist for defining AD, including the 

leverage approach (based on the Hat matrix), distance-based approaches (e.g., Mahalanobis or 

Euclidean distance in descriptor space), and probability density-based metrics derived from model 

uncertainty [58]. In ensemble and deep learning frameworks, model confidence can be quan!fied via 

predic!on variance across base learners or through Bayesian approxima!ons, providing uncertainty 

es!mates that guide decision-making in virtual screening and lead op!misa!on [59]. 

 

External Valida"on 

Perhaps the most cri!cal stage in model evalua!on is external valida!on tes!ng the model on 

completely independent datasets that were not used during training or parameter op!misa!on. High 

external predic!vity (e.g., Q²_ext ≥ 0.6) is generally considered indica!ve of a robust QSAR model 

under Organisa!on for Economic Co-opera!on and Development (OECD) guidelines [60]. In AI-based 

workflows, transfer learning and !me-split valida!on (training on historical data, tes!ng on more 

recent compounds) provide addi!onal insights into model temporal stability and real-world 

deployment performance [61]. Ul!mately, rigorous training and valida!on procedures ensure that AI-

QSAR models transi!on from purely correla!ve constructs to predic!ve, decision-support tools that 

can withstand regulatory and scien!fic scru!ny. 

 

6.7 So=ware Ecosystem and Workflows (RDKit, Scikit-Learn, DeepChem, KNIME, TensorFlow) 

Modern AI-QSAR modelling is supported by a rich ecosystem of open-source and commercial 

so:ware tools that facilitate descriptor calcula!on, feature selec!on, model construc!on, and 

performance evalua!on. Integra!on of these pla[orms enables the crea!on of reproducible, 

automated pipelines that are essen!al for scalable drug discovery. The selec!on of a suitable so:ware 

framework depends on data type, computa!onal resources, and intended model complexity [62]. 

RDKit is the de facto open-source chemoinforma!cs library for molecular representa!on and 

descriptor genera!on. It supports computa!on of more than 200 physicochemical descriptors and 

fingerprints, including ECFP, MACCS, and topological torsion fingerprints [63]. RDKit’s Python 

integra!on allows seamless interoperability with machine learning libraries such as Scikit-Learn and 

TensorFlow, forming the founda!on of custom QSAR workflows. Addi!onally, RDKit enables molecular 

standardisa!on, substructure searching, and 3D conformer genera!on, which are cri!cal for ensuring 

consistent input data quality. 

Scikit-Learn provides an extensive suite of machine learning algorithms for regression, 

classifica!on, and clustering. It is ideal for implemen!ng algorithms such as random forests, SVMs, in, 

and gradient boos!ng within descriptor-based QSAR workflows [64]. Its modular design facilitates 

reproducible pipelines encompassing preprocessing (scaling, normalisa!on), feature selec!on, model 

fiOng, and valida!on. Furthermore, Scikit-Learn’s Research and Pipeline func!ons streamline 

hyperparameter op!misa!on and cross-valida!on, ensuring best-prac!ce model development. 

Depeche, a specialised library for molecular deep learning, extends TensorFlow and Porch capabili!es 

to chemical data. It provides prebuilt architectures for graph convolu!onal networks (GCNs), message 

passing neural networks (MPNNs), and molecular autoencoders, suppor!ng end-to-end AI-QSAR 

model development [65]. Depeche also offers pre-processed benchmark datasets such as Tox21, QM9, 

and Molecule Net, which have become standard references for evalua!ng model performance across 

diverse molecular proper!es. 
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KNIME (Konstanz Informa!on Miner) provides a visual, node-based workflow environment 

that integrates cheminforma!cs and machine learning modules, including Ri! and Weka extensions. 

KNIME is par!cularly valuable for researchers with limited programming experience, as it allows drag-

and-drop crea!on of complex QSAR pipelines from data import and descriptor genera!on to model 

valida!on and visualisa!on [66]. Its transparency and reproducibility make it suitable for academic and 

regulatory contexts alike. TensorFlow and Porch serve as the backbones of deep learning in QSAR. 

TensorFlow offers extensive tools for construc!ng, training, and deploying neural networks, while 

Porch provides dynamic graph computa!on advantageous for research and prototyping. These 

frameworks enable the implementa!on of complex architectures such as CNNs, RNNs, and 

transformers for learning from raw molecular graphs or SMILES sequences [67]. Their GPU accelera!on 

and compa!bility with cloud compu!ng pla[orms allow scalable model training on large chemical 

datasets. 

In a typical AI-QSAR workflow, Ri! generates descriptors, Scikit-Learn handles classical ML 

algorithms, and Depeche or TensorFlow facilitates deep learning model construc!on. Model outputs 

are validated, visualised, and op!mised within KNIME or Jupiter environments. Together, these tools 

form a coherent computa!onal ecosystem enabling end-to-end automa!on, from raw data inges!on 

to validated, deployable QSAR models [68]. Such interoperability between cheminforma!cs and AI 

frameworks reflects the maturity of the CADD field, empowering researchers to move beyond proof-

of-concept models toward industrial-scale predic!ve systems. Importantly, open-source tools promote 

transparency and reproducibility two essen!al pillars of scien!fic integrity and regulatory acceptance 

in modern drug discovery [69]. 

 

6.8 Case Studies and Applica"ons in Drug Discovery 

The applica!on of AI-based QSAR models has expanded across all stages of the drug discovery 

pipeline, from target iden!fica!on and hit genera!on to ADMET predic!on and lead op!misa!on. This 

sec!on highlights selected case studies illustra!ng the prac!cal impact of ML and AI approaches in 

modern pharmacological research. 

Case Study 1: Predic"ng Kinase Inhibitor Potency Using Random Forest QSAR 

Kinase inhibitors represent a major therapeu!c class in oncology and inflammatory diseases. 

A study by Zhu et al. u!lised random forest-based QSAR models trained on physicochemical and 

topological descriptors from the Chambly database to predict inhibitory ac!vity across mul!ple 

kinases [70]. The model achieved an external R² of 0.74 and successfully priori!sed novel scaffolds 

validated through in vitro assays. Importantly, the use of feature importance metrics revealed key 

contribu!ons of hydrophobic surface area and hydrogen bond donor count to potency, providing 

mechanis!c interpretability o:en absent in deep learning models. 

Case Study 2: Deep Learning QSAR for Toxicity Predic"on (Tox21 Challenge) 

The Tox21 dataset, comprising over 10,000 compounds with annotated toxicological 

endpoints, served as a benchmark for deep learning QSAR. Mul!-task deep neural networks 

implemented in Depeche outperformed classical methods by jointly learning across related toxicity 

endpoints [71]. These models achieved superior ROC-AUC scores (up to 0.89) and exhibited 

transferability across assays involving nuclear receptor ac!va!on and stress response pathways. The 

success of mul!-task learning in this context underscored the advantage of leveraging shared 

molecular pa�erns across biological systems. 
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Case Study 3: SMILES-Based RNN for An"viral Ac"vity Predic"on 

In another landmark study, RNNs trained on SMILES representa!ons of an!viral compounds 

demonstrated high predic!ve accuracy for iden!fying inhibitors of SARS-CoV-2 main protease [72]. The 

RNN model captured sequence-based structural dependencies, enabling accurate classifica!on of 

ac!ve versus inac!ve molecules with an F1-score of 0.87. Furthermore, by using a�en!on-weight 

visualisa!on, the researchers iden!fied substructural mo!fs contribu!ng most to bioac!vity, thereby 

enhancing interpretability in an otherwise opaque deep learning model. 

Case Study 4: Graph Neural Networks in Mul"-Target Drug Discovery 

Graph convolu!onal networks (GCNs) have been used to model polypharmacological 

interac!ons by represen!ng molecules as atom–bond graphs. A study using GCNs to predict binding 

affini!es across 30 protein targets achieved significant improvements over Coma and SVM baselines 

[73]. The network’s ability to share learned representa!ons across targets facilitated iden!fica!on of 

mul!target compounds, a key objec!ve in trea!ng mul!factorial diseases such as Alzheimer’s and 

cancer. 

Case Study 5: Genera"ve QSAR for Lead Op"misa"on 

Recent advances have combined genera!ve models with QSAR feedback loops to design novel 

compounds op!mised for potency and selec!vity. For example, a VAE-based genera!ve QSAR system 

trained on dopamine D₂ receptor ligands generated novel scaffolds with improved docking scores and 

ADMET profiles compared to known reference compounds [74]. This approach represents a paradigm 

shi: from predic!ve to crea!ve modelling where AI not only analyses but also designs molecules 

guided by QSAR principles. Collec!vely, these case studies illustrate the versa!lity and transforma!ve 

impact of AI-QSAR models in accelera!ng drug discovery. They demonstrate that ML algorithms are 

not mere computa!onal tools but strategic assets that integrate chemistry, biology, and data science 

into a unified predic!ve framework. Beyond efficiency, these systems enhance hypothesis genera!on, 

support ra!onal priori!sa!on, and reduce experimental a�ri!on rates, embodying the fundamental 

ethos of computer-aided drug design [75]. 

 

6.9 Challenges, Interpretability and Ethical Considera"ons 

Despite the rapid progress of machine learning and AI-based QSAR methodologies, numerous 

challenges persist concerning model transparency, data integrity, and ethical deployment. While AI-

QSAR systems have achieved remarkable predic!ve accuracy, their growing complexity o:en results in 

reduced interpretability a key obstacle to scien!fic acceptance and regulatory approval. The dual goals 

of performance and explainability are not always aligned, crea!ng a persistent tension in the design of 

modern predic!ve models [76]. 

Interpretability and Explainable AI (XAI) 

Tradi!onal QSAR models offered mechanis!c clarity by directly linking specific descriptors to 

biological outcomes. In contrast, AI models par!cularly deep neural networks func!on as “black 

boxes,” making it difficult to ra!onalise predic!ons in chemical or pharmacological terms. This lack of 

interpretability can hinder trust and reproducibility, especially when model decisions are used to 

priori!se compounds for costly experimental valida!on. To address this, explainable AI (XAI) 

techniques such as Shapley Addi've explana'ons (SHAP), Layer-wise Relevance Propaga'on (LRP), and 

Integrated Gradients have been employed to a�ribute importance scores to input features [77]. These 

methods enable visualisa!on of which molecular substructures most influence predicted ac!vity, 

par!ally restoring the mechanis!c transparency of classical QSAR. 
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Moreover, methods like counterfactual explana'ons which iden!fy minimal molecular 

modifica!ons that would change a predic!on offer intui!ve insights for medicinal chemists seeking 

structure–ac!vity ra!onales. These XAI strategies are par!cularly valuable in regulatory contexts, 

where transparency in model ra!onale is a prerequisite for adop!on [78]. 

 

Data Quality, Bias, and Reproducibility 

The reliability of AI-QSAR models cri!cally depends on the quality of input data. Issues such as 

inconsistent molecular annota!ons, experimental noise, and chemical redundancy can introduce 

significant bias, reducing model generalisability. Public databases (e.g., Chambly, PubChem) contain 

ac!vity data measured under heterogeneous assay condi!ons, o:en without standardised protocols, 

leading to dataset imbalance or conflic!ng annota!ons [79]. Furthermore, data bias such as 

overrepresenta!on of certain scaffolds or physicochemical property ranges can result in models that 

perform well on training data but fail catastrophically when confronted with structurally novel 

compounds [80]. To mi!gate these risks, rigorous data cura!on and standardisa!on are essen!al. This 

includes removal of duplicates, outlier detec!on, canonicaliza!on of SMILES strings, and normalisa!on 

of bioac!vity units. Adherence to FAIR (Findable, Accessible, Interoperable, and Reusable) principles 

ensures data provenance and reproducibility, while con!nuous integra!on of experimental feedback 

improves model reliability over !me [81]. 

 

Algorithmic Bias and Ethical Responsibility 

AI models are only as unbiased as the data on which they are trained. If a QSAR model is 

developed using datasets biased toward specific chemical classes, it may inadvertently priori!se 

certain molecular scaffolds while overlooking others, poten!ally reinforcing exis!ng research biases. 

Such algorithmic bias can distort drug discovery pipelines by skewing chemical diversity and limi!ng 

innova!on [82]. Furthermore, excessive reliance on automated AI systems without adequate human 

oversight raises ethical concerns about accountability, par!cularly in safety-cri!cal applica!ons such 

as toxicity predic!on. Transparency in algorithm selec!on, model valida!on, and dataset composi!on 

must therefore become standard prac!ce. Recent ini!a!ves advocate for model cards and data sheets 

documen!ng the origin, preprocessing steps, and limita!ons of training data, similar to ethical 

guidelines in other AI domains [83]. Such documenta!on supports responsible innova!on and fosters 

trust between computa!onal scien!sts, medicinal chemists, and regulatory authori!es. 

 

Computa"onal and Environmental Considera"ons 

Training large deep learning models for QSAR involves significant computa!onal resources, 

raising sustainability concerns due to energy consump!on and carbon footprint. Green compu!ng 

strategies such as transfer learning, parameter-efficient architectures, and cloud-based shared 

resources can mi!gate environmental impact while maintaining model accuracy [84]. As 

computa!onal chemistry moves toward large-scale AI adop!on, sustainability should be integrated 

into best-prac!ce guidelines alongside accuracy and interpretability. In summary, the ethical landscape 

of AI-QSAR extends beyond model performance. It encompasses transparency, fairness, 

environmental sustainability, and the responsible use of predic!ve models to ensure that 

computa!onal accelera!on in drug discovery aligns with scien!fic integrity and societal benefit [85]. 
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Table 6.1 Compara"ve Overview of Machine Learning and AI Algorithms Used in QSAR Modelling 

Algorithm / 

Model 

Learning 

Type 

Strengths Limita"ons Typical QSAR 

Applica"ons 

Mul"ple 

Linear 

Regression 

(MLR) 

Sta!s!cal 

(linear) 

High 

interpretability, 

fast computa!on 

Fails for nonlinear 

data 

Classical QSAR with 

physicochemical 

descriptors 

Support 

Vector 

Machine 

(SVM) 

Supervised Handles nonlinear 

rela!onships via 

kernels, robust to 

overfiOng 

Sensi!ve to kernel 

choice, limited 

interpretability 

Ac!vity predic!on, 

toxicity classifica!on 

Random 

Forest (RF) 

Supervised 

Ensemble 

Robust, 

interpretable via 

feature 

importance, 

handles large 

descriptor sets 

May bias toward 

dominant 

features, limited 

extrapola!on 

HTS datasets, toxicity, 

solubility QSAR 

Gradient 

Boos"ng 

(Boost, Light) 

Supervised 

Ensemble 

High accuracy, 

efficient 

computa!on, 

interpretable via 

SHAP 

Sensi!ve to 

hyperparameters, 

prone to 

overfiOng on 

noise 

Regression/classifica!on 

for affinity predic!on 

k-Nearest 

Neighbour 

(in) 

Instance-

based 

Intui!ve, minimal 

training 

Inefficient for 

large datasets, 

lacks 

generalisa!on 

Similarity-based 

screening 

Ar"ficial 

Neural 

Networks 

(ANNs) 

Supervised Capture complex 

nonlineari!es 

Prone to 

overfiOng, limited 

explainability 

Bioac!vity and receptor-

binding QSAR 

Convolu"onal 

Neural 

Networks 

(CNNs) 

Deep 

Learning 

Automa!c feature 

extrac!on from 

graphs/images 

High data and 

GPU demand 

3D-QSAR, protein–ligand 

affinity 

Recurrent 

Neural 

Networks 

(RNNs, 

LSTMs) 

Deep 

Learning 

Captures 

sequen!al/SMILES 

data 

Vanishing 

gradient, long 

training !me 

SMILES-based QSAR, 

genera!ve design 

Transformer 

Models 

(Chambert, 

MolT5) 

Deep 

Learning 

(Self-

A�en!on) 

Contextual 

learning, 

transferability, 

mul!task capacity 

Large 

computa!onal 

cost 

Mul!target predic!on, 

ADMET es!ma!on 

Graph Neural 

Networks 

(GNNs, 

MPNNs) 

Deep 

Learning 

(Graph-

based) 

Directly learn from 

molecular 

topology, 

interpretable 

a�en!on 

Complex 

implementa!on, 

requires large 

data 

Structure-based QSAR, 

mul!target 

pharmacology 
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Figure 6.1 AI-Driven QSAR Workflow and Algorithmic Landscape 

 

6.10 Future Direc"ons in AI-Enhanced QSAR 

The future of QSAR lies at the intersec!on of data science, molecular modelling, and ar!ficial 

intelligence. The ongoing transforma!on from sta!s!cal correla!ons to autonomous molecular 

intelligence suggests that future QSAR systems will be capable of con!nuous learning, cross-domain 

integra!on, and hypothesis genera!on in real !me. This evolu!on will be driven by several converging 

technological and conceptual trends. 

 

Integra"on of Graph Neural Networks and Mul"modal Learning 

Next-genera!on QSAR frameworks will increasingly rely on graph neural networks (GNNs) and 

message passing neural networks (MPNNs) that directly process molecular graphs. These models 

capture atom-level dependencies and topological informa!on with unprecedented fidelity, offering 

interpretability through a�en!on-based mechanisms that highlight substructures contribu!ng to 

predicted bioac!vity [86]. Moreover, mul'modal learning approaches that combine structural, omics, 

and textual data will enable the simultaneous modelling of chemical, biological, and pharmacological 

features, bridging the gap between molecular proper!es and systems pharmacology [87]. 

 

Federated and Transfer Learning 

Data privacy and proprietary constraints o:en prevent pharmaceu!cal companies from 

sharing bioac!vity datasets. Federated learning offers a poten!al solu!on by enabling collabora!ve 

model training across distributed datasets without exposing confiden!al data. In parallel, transfer 

learning allows pretrained models (e.g., Chambert, MolT5) to be fine-tuned for specific targets or 

tasks, significantly reducing the need for large labelled datasets [88]. These methods will democra!se 
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access to high-performance AI-QSAR tools and enhance knowledge sharing across the scien!fic 

community. 

 

Genera"ve AI and Inverse QSAR 

Emerging genera've QSAR frameworks integrate molecular design with predic!ve feedback 

loops, enabling de novo genera!on of molecules op!mised for potency, selec!vity, and ADMET 

profiles. Varia!onal autoencoders, genera!ve adversarial networks (GANs), and diffusion models have 

already demonstrated the ability to explore vast chemical spaces efficiently [89]. When coupled with 

QSAR-guided scoring func!ons, these systems evolve into inverse design engines capable of 

autonomously proposing synthesizable, high-affinity candidates, thus closing the loop between 

predic!on and crea!on. 

 

Explainable and Causally Informed QSAR 

Future QSAR research will move beyond correla!on-based learning toward causally informed 

models that iden!fy mechanis!c determinants of bioac!vity. By integra!ng causal inference 

frameworks and explainable AI, QSAR models will gain the ability to dis!nguish genuine cause–effect 

rela!onships from spurious correla!ons, increasing their u!lity in hypothesis-driven drug design [90]. 

This paradigm shi: will also support regulatory confidence, as causally interpretable predic!ons align 

with pharmacological reasoning. 

 

Quantum and Hybrid Compu"ng for Molecular Learning 

Quantum compu!ng promises to revolu!onise molecular simula!ons and descriptor 

genera!on. Hybrid quantum–classical QSAR approaches, where quantum subrou!nes compute 

electronic structure proper!es embedded into classical ML pipelines, are already under explora!on 

[91]. These hybrid systems may drama!cally enhance the precision of molecular property predic!ons 

while reducing computa!onal bo�lenecks in feature calcula!on. 

 

Towards Autonomous, Closed-Loop Discovery 

Ul!mately, AI-enhanced QSAR will evolve into autonomous discovery systems integrated with 

robo!c synthesis and high-throughput experimenta!on. Such systems will operate in closed loops 

itera!vely genera!ng, predic!ng, synthesising, and valida!ng compounds thereby realising the vision 

of self-driving laboratories in pharmaceu!cal research [92]. These pla[orms will not replace human 

exper!se but will amplify it, allowing chemists to focus on strategy, innova!on, and interpreta!on. In 

essence, the next genera!on of QSAR will be dynamic, data-centric, and ethically aligned. Its 

convergence with AI, quantum computa!on, and automa!on heralds an era of unprecedented 

predic!ve power and transla!onal poten!al, reaffirming QSAR’s enduring role as the quan!ta!ve 

heart of computer-aided drug design [93]. 

 

6.11 CONCLUSION 

Machine learning and AI-based QSAR have transformed the paradigm of computa!onal drug 

design by moving beyond sta!c descriptor correla!ons toward dynamic, data-driven molecular 

intelligence. Through the integra!on of algorithms such as SVM, RF, GBM, and neural architectures 

including CNNs, RNNs, and transformers modern QSAR models capture nonlinear, mul!dimensional 

interac!ons underlying chemical–biological rela!onships with remarkable precision. A I-QSAR 

frameworks now serve as indispensable tools across all phases of the discovery pipeline: early hit 
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iden!fica!on, ADMET predic!on, off-target analysis, and lead op!misa!on. The integra!on of 

advanced valida!on methods, applicability-domain mapping, and explainable AI ensures that 

predic!ons are scien!fically credible and transparent. The convergence of chemoinforma!cs so:ware 

RDKit, Scikit-Learn, DeepChem, KNIME, TensorFlow has enabled reproducible, scalable, and 

automated workflows accessible to both academia and industry. 

However, this technological evolu!on introduces new responsibili!es. Data quality, 

algorithmic bias, and model interpretability remain central challenges. Ethical and environmental 

considera!ons such as transparency, fairness, and computa!onal sustainability must guide future 

implementa!ons. The emergence of federated learning, graph neural networks, and genera!ve QSAR 

architectures signals a shi: from predic!ve to crea!ve intelligence, where AI not only forecasts ac!vity 

but designs novel, viable molecules within defined chemical and biological constraints. 
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