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Abstract: Scene detection, the process of identifying and interpreting objects and contextual 

information within an image or video frame, has become a crucial capability in computer vision. 

It enables machines to perceive environments and make decisions based on spatial and 

semantic relationships of detected elements. Recent advancements in deep learning and 

convolutional neural networks have led to efficient and accurate detection systems, with the 

YOLO (You Only Look Once) family setting benchmarks for real-time performance. YOLOv10n, 

the nano version of YOLOv10, introduces a lightweight architecture optimized for edge devices 

and low-power systems. This chapter explores its design, training methodologies, dataset 

preparation, and evaluation metrics. Experimental results show that YOLOv10n offers a strong 

trade-off between accuracy and speed, making it ideal for real-time use. The chapter concludes 

with a discussion on its applicability, limitations, and advantages over earlier versions. 
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1. INTRODUCTION 

Scene detection constitutes a key element of computer vision that encompasses the 

automatic identification and interpretation of multiple objects and their contextual relationships 

within an image or video frame. Unlike basic object detection, scene detection aims to infer the 

broader semantic context by recognizing both individual elements and the interactions among 

them. This capability is essential Involving a broad spectrum of intelligent systems, including 

autonomous vehicles, smart surveillance networks, environmental monitoring stations, robotics, 

and industrial automation platforms [1]. Early approaches to scene detection relied heavily on 

handcrafted features. Strategies such as Scale-Invariant Feature Transform (SIFT) [2] and 

Histogram of Oriented Gradients (HOG) [3] were widely used to extract visual descriptors for 

object classification. While these traditional methods laid the foundation for computer vision, they 

were limited in robustness, particularly under varying illumination, scale, and occlusion 

conditions. Moreover, they lacked the capability to capture higher-level contextual 

understanding essential to complex scene understanding. The paradigm shifted with the 

emergence of Convolutional Neural Networks (CNNs) which enabled the extraction of 

hierarchical representations extracted straight from unprocessed image data. Groundbreaking 

models such as Region-based Convolutional Neural Network (R-CNN) [4], Fast R-CNN [5], and 

Faster R-CNN[6] brought significant improvements in object detection accuracy. Despite their 

effectiveness, these models demanded high computational resources, limiting their use in real-

time scenarios and edge deployment scenarios. 

The introduction of the YOLO (You Only Look Once) framework marked a major 

advancement in object detection by recasting it as a unified regression problem. Unlike two-

stage detectors, YOLO performs object localization and classification in a single forward pass of 

the network, drastically improving detection speed while retaining competitive accuracy [7]. 

This efficiency made YOLO highly optimized for real-time applications, prompting the 

emergence of successive versions such as YOLOv3, YOLOv4, YOLOv5, and beyond. YOLOv10n, 

the nano version of the YOLOv10 family, is a lightweight and power-efficient detector 

specifically designed for deployment in resource-constrained environments. It introduces a 

series of architectural optimizations that contribute to its effectiveness: Cross Stage Partial with 

Focus (C2f) modules for efficient feature extraction and reuse. Anchor-free detection heads to 

simplify label assignment and improve generalization. SimOTA (Simplified Optimal Transport 

Assignment) for enhanced training dynamics [8]. These advancements allow YOLOv10n to 

operate effectively on resource-constrained devices, such as drones, embedded vision systems, 

IoT sensors, and mobile devices. Despite its compact size, YOLOv10n maintains a high detection 

performance, rendering it suitable for real-time scene understanding in practical deployments. 

This chapter offers an in-depth analysis of scene detection using YOLOv10n. It covers the 

architectural design of the model, its training pipeline, dataset considerations, evaluation 

metrics, and an elaborate study of the results. This study offers readers a deeper understanding 

of the applicability and performance of YOLOv10n in diverse real-world environments, ranging 

from urban streets and industrial zones to indoor and natural scenes. 

 

2. LITERATURE REVIEW 

Scene detection and object localization have undergone a significant transformation over 

the last couple of decades, transitioning from traditional handcrafted feature-based methods to 

deep learning-based frameworks. This progression has played a key role in enhancing detection 

accuracy, computational efficiency, and adaptability across complex and dynamic environments. 
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Initial methods in scene and object detection employed handcrafted features such as Scale- 

Invariant Feature Transform (SIFT) [9], Histogram of Oriented Gradients (HOG) [10], and 

Speeded-Up Robust Features (SURF) [11]. These techniques extracted key points or descriptors 

from images based on edge, texture, or intensity gradients. SIFT, for instance, received widespread 

acclaim for its robustness to scale and rotation, while HOG was favored in pedestrian detection 

due to its effectiveness in capturing edge orientations. Despite their success in controlled 

settings, these methods exhibited poor generalization in complex real-world scenarios involving 

occlusion, background clutter, or varying lighting conditions. Additionally, their performance in 

real-time applications was limited due to high computational cost and the need for manual 

feature engineering. The limitations of traditional techniques led to the adoption of 

Convolutional Neural Networks (CNNs), which extract layered feature representations from 

large datasets. The Region- based CNN (R-CNN) [12] was among the first deep learning models 

to achieve significant gains in object detection performance by combining selective search for 

region proposals with CNN- based feature extraction. However, R-CNN’s multi-stage pipeline 

and high inference time were impractical for real-time deployment. To address this, Fast R-CNN 

[13] introduced shared convolutional features across region proposals, reducing redundancy 

and speeding up training. Faster R-CNN [14] further advanced the approach by integrating the 

Region Proposal Network (RPN) into the CNN, enabling near real-time detection with high 

accuracy. However, all these models remained computationally heavy and unsuitable for 

deployment on edge or mobile devices. 

A major leap in real-time detection was achieved with the introduction of You Only Look 

Once (YOLO) [15]. Unlike its predecessors, YOLO reframed approaches the task by using a single 

regression model to predict both bounding box coordinates and class probabilities from full 

images in a single network pass. This design enabled YOLO to perform image analysis at 

significantly higher frame rates, making it suitable for video surveillance, autonomous navigation, 

and robotics. Successive iterations—YOLOv2 [16], YOLOv3 [17], YOLOv4 [18], and YOLOv5 [19] 

introduced architectural enhancements such as multi-scale detection, residual blocks, feature 

pyramid networks, and improved backbone networks like CSPDarknet53. YOLOv6 [20] and 

YOLOv8 [21] continued to refine the architecture with improvements in training strategies and 

inference efficiency. With the growing demand for deployment in edge environments, lightweight 

variants such as YOLOv5n (nano), YOLOv6n, and YOLOv8n were developed to reduce model size 

and increase inference speed without significant loss in accuracy. These models employed 

pruning, quantization, and efficient block designs like CSPNet (Cross Stage Partial Network) and 

ELAN (Efficient Layer Aggregation Networks). 

YOLOv10n, the nano variant of the recently released YOLOv10 [22], incorporates further 

optimizations by integrating Cross Stage Partial with Focus (C2f) modules and anchor-free 

detection heads. These enhancements simplify the Model optimized for both speed and accuracy 

across multiple object scales. YOLOv10 also adopts SimOTA [23] for label assignment, which 

improves training efficiency by better aligning predictions with ground-truth objects. The 

resulting model is extremely compact, fast, and suitable for real-time scene detection tasks on 

low-power devices. The progression from handcrafted methods to deep learning and lightweight 

CNN architectures has revolutionized scene detection. YOLOv10n builds on this legacy, offering 

an ideal balance of accuracy and speed for deployment in real-world, resource-constrained 

environments. 
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3. YOLOV10N ARCHITECTURE OVERVIEW 

The YOLOv10n model, a nano variant of the YOLOv10 family, is architected for 

lightweight, real-time object detection with high efficiency and accuracy. It is designed to run 

effectively on edge devices and low-power platforms while preserving core detection capabilities. 

The architecture follows the standard three-stage pipeline of modern object detectors: 

Backbone, Neck, and Detection Head, each optimized for performance and speed. 

 

A. Backbone: Efficient Feature Extraction 

The backbone is responsible to derive visual characteristics from the input image. 

YOLOv10n uses a streamlined version of the Cross Stage Partial Network (CSPNet) called C2f 

(Cross Stage Partial with Focus). This module improves computational efficiency and memory 

utilization by splitting the feature map into two parts: one part goes through a sequence of 

convolutional layers, while the other bypasses them and is merged later [24].The C2f module 

enhances gradient flow and reduces redundancy by allowing part of the gradient to propagate 

directly. It is a key innovation that balances the trade-off between parameter count and learning 

capacity. Additionally, a Focus layer is applied during the initial phase of the model to slice and 

concatenate image patches along the channel dimension. This layer helps retain spatial 

information and reduces the resolution of the input while increasing many channels, 

contributing to greater efficient feature encoding [25]. 

 

B. Neck: Multi-Scale Feature Aggregation 

The neck module combines feature maps of different resolutions to help the model 

detect objects of various sizes. YOLOv10n adopts a lightweight Path Aggregation Network 

(PANet), which includes top-down and bottom-up feature fusion paths [26]. This structure 

enhances spatial information flow and ensures that high-resolution features contribute to low-

resolution detections and vice versa. The PANet in YOLOv10n is employs depth wise separable 

convolutions to minimize parameter count and computational complexity while ensuring robust 

performance. By aggregating features across layers, the neck refines the model’s effectiveness in 

detect small and large objects alike. 

 

C. Detection Head: Anchor-Free Prediction 

The detection head is where the model predicts bounding boxes, objectness scores, and 

class probabilities. Unlike earlier YOLO versions that used anchor-based detection, YOLOv10n 

uses an anchor-free detection head. This design eliminates the need to manually tune anchor 

boxes and simplifies the training process [27]. Instead of predefined anchors, each grid cell 

predicts a bounding box relative to its center using direct regression. This makes the model 

more adaptable to varied object shapes and scales and reduces mismatches between ground-

truth objects and anchor boxes. The output for each grid cell consists of: 

 x, y, w, h: Bounding box coordinates 

 Objectness score: Confidence that an object is present 

 Class scores: Probabilities for each object class 

The predictions are refined using CIoU (Complete Intersection over Union) loss during training to 

improve bounding box quality [28]. 

 

D. SimOTA Assignment Strategy 

YOLOv10n utilizes the SimOTA (Simplified Optimal Transport Assignment) strategy 
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during training for label assignment. SimOTA dynamically matches predicted boxes to ground- 

truth labels based on both spatial proximity and confidence scores. This approach improves the 

quality of positive samples and accelerates convergence [29]. SimOTA addresses one of the core 

limitations in previous training strategies: the hard assignment of anchors to ground truths. By 

evaluating the cost matrix between predictions and labels, SimOTA ensures better supervision 

during training, especially in dense object scenes. 

 

E. Post-Processing: Efficient NMS 

During inference, YOLOv10n applies Non-Maximum Suppression (NMS) to remove 

duplicate or overlapping detections. NMS selects the bounding box with the highest confidence 

score and eliminates nearby boxes that have a high Intersection over Union (IoU) with it. 

YOLOv10n’s NMS is optimized for speed using matrix operations and GPU parallelization. 

Optionally, users can employ Soft-NMS or Class-Agnostic NMS depending on the use case, 

although the default configuration strikes a trade-off between efficiency and computational load. 

 

4. METHODOLOGY 

The methodology for implementing scene detection using YOLOv10n involves a 

structured pipeline comprising data preparation, model training, evaluation, and deployment. 

Each stage is designed to maximize performance while maintaining the model's lightweight and 

real-time capabilities. 

 

Fig 1: Overview of Proposed Methodology 
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1. Input Image Data 

The process begins with collecting a diverse image dataset that represents various 

environments urban, indoor, natural, and industrial. Each image is manually or semi-

automatically annotated in YOLO format (bounding boxes with class labels). 

2. Dataset Preparation 

This step involves: Resizing all images to the model's input size (e.g., 640×640). 

Converting annotations to YOLO TXT format. Splitting the dataset into training, validation, and 

test sets (typically 70-20-10%). 

3. Data Augmentation 

To improve generalization and prevent overfitting, augmentation techniques are applied: 

Mosaic Augmentation: Combines four images into one to increase spatial diversity.  

MixUp: Blends two images and their labels.  

Color Jittering: Adjusts brightness, contrast, and saturation.  

Horizontal Flip: Simulates real-world variation in object orientation. 

4. Preprocessing Pipeline 

Images are normalized (e.g., pixel values scaled to [0,1]) and labels are validated for 

consistency. This ensures the inputs conform to the requirements of YOLOv10n. 

5. Model Initialization 

The YOLOv10n model is initialized with: Pretrained weights (typically trained on COCO 

or a similar dataset). Configuration files specifying architecture (e.g., layers, channels, anchor-

free settings). This step leverages transfer learning to speed up convergence and improve 

accuracy. 

6. Training Loop 

The model is trained using a standard deep learning loop:  

Forward pass: Predicts bounding boxes and classes.  

Loss computation: CIoU Loss: For bounding box regression.  

Objectness Loss: For determining presence of objects.  

Classification Loss: For category prediction.  

Backpropagation and optimizer update (e.g., using SGD or Adam). Training continues for a set 

number of epochs or until early stopping based on validation loss. 

7. Model Evaluation 

The best-performing model checkpoint is evaluated using: Mean Average Precision 

(mAP@0.5 and @0.5:0.95), Precision, Recall, F1 Score, Inference Speed (FPS) and Class-wise 

performance analysis. 

 

5. EVALUATION METRICS 

Evaluating the performance of a scene detection model like YOLOv10n requires a robust 

set comprising metrics that evaluate both accuracy and the model’s capability to generalize 

across diverse and complex scenes. With regard to object detection and scene understanding, 

evaluation metrics must assess both localization (i.e., how well the model places bounding 

boxes) and classification (i.e., how accurately it labels objects). This section discusses the 

principal measures applied in evaluating the performance of YOLOv10n. Intersection over Union 

(IoU) is a foundational metric used to quantify the extent to which the predicted bounding box 

matches the ground truth. It is computed as: 

��� =  
���� �� �	
�	 

���� �� ����
�� 
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An IoU score closer to 1 indicates a better overlap. A prediction is typically considered correct if 

its IoU with the ground truth box exceeds a certain threshold (e.g., 0.5 or 0.75). 

 

Precision and Recall are important for evaluating classification performance, particularly in 

imbalanced datasets. 

 Precision indicates the accuracy of model’s positive predictions are correct:  

Precision = 
���� ��������� 

���� ��������� + ����� ��������� 

 

 Recall Indicates the model's ability to detect actual positive instances: 

Recall = 
���� ��������� 

���� ��������� + ����� ��������� 

In the context of scene detection, precision reflects the model's ability to avoid false positives, and 

recall measures its effectiveness in detecting all relevant objects. 

 

The F1 Score is the harmonic mean of precision and recall. It provides a single metric that balances 

the trade-off between the two: 

F1= 2×     
����
�
�	+ ���

 

����
�
�	× ���

 

 

F1 is especially valuable when the cost of false positives and false negatives is similar, such as in 

surveillance or safety-critical applications.  

 

The most widely used metric in object detection is the Mean Average Precision (mAP). It 

summarizes the model’s ability to detect and classify objects correctly across all classes. 

 Average Precision (AP) is calculated for each class by plotting the Precision-Recall (PR) 

curve and computing the area under this curve. 

 mAP is then the mean of APs across all object classes. 

 

YOLOv10n is evaluated using two variants: 

 mAP@0.5: The average precision at IoU threshold = 0.5. 

 mAP@0.5:0.95: Averaged over multiple IoU thresholds (0.5 to 0.95 with 0.05 steps), 

offering a stricter and more comprehensive performance estimate. 

This multi-threshold version penalizes inaccurate box predictions and is more indicative of real- 

world performance. 

 

6. RESULTS AND ANALYSIS 

This section presents and analyzes the results of scene detection using the YOLOv10n 

model trained on a diverse, multi-domain dataset. The evaluation was performed using the 

metrics discussed in Section 5, and comparisons were made with other lightweight object 

detectors to contextualize YOLOv10n’s effectiveness. Both quantitative results (e.g., mAP, FPS) 

and qualitative outcomes (e.g., detection visualizations) are discussed. 
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Animals   

 

A) Quantitative Evaluation 

After 100 epochs of training, the best YOLOv10n model (based on validation mAP@0.5) achieved 

the following results on the test set: 

 

Metric Result 

mAP@0.5 71.2% 

mAP@0.5:0.95 75.6% 

Precision 74.3% 

Recall 69.7% 

F1 Score 71.9% 

 

These results confirm that YOLOv10n delivers strong detection performance while maintaining 

real-time capabilities, making it suitable for deployment on resource-constrained platforms like 

drones, embedded sensors, and edge devices. 

 

B) Comparative Analysis 

To validate the benefits of YOLOv10n, a comparative analysis was performed against 

other lightweight detectors using the same dataset and evaluation pipeline: 

 

Model mAP@0.5 mAP@0.5:0.95 FPS Model Size 

YOLOv5n 66.3% 40.2% 103 4.6 MB 

YOLOv8n 69.5% 43.9% 98 5.4 MB 

YOLOv10n 71.2% 45.6% 112 4.2 MB 

 

YOLOv10n outperformed YOLOv5n and YOLOv8n in both detection accuracy and inference 

speed. Its smaller size also makes it more attractive for memory-limited environments. This 

improvement is attributed to architectural innovations like the C2f module and anchor-free head 

design. 

 

C) Visual Results and Qualitative Analysis 

Visual inspection of detection outputs showed that YOLOv10n: 

 Correctly identifies and localizes multiple objects even under partial occlusion. 

 Performs well across varied lighting conditions (indoor, outdoor, dusk). 

 Maintains high precision in complex scenes such as intersections or industrial zones. 
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Examples include accurate detection of pedestrians and vehicles in cluttered urban settings, and 

effective scene parsing in indoor office environments. 

 

Failure Cases Observed: 

 Missed detections of small or heavily occluded objects. 

 Confusion between similar classes (e.g., monitor vs. TV). 

 Occasional false positives on reflective surfaces. 

These failures suggest areas for future improvement via additional training data, synthetic 

augmentation, or ensemble models. 

 

D) Practical Implications 

The performance and compact design of YOLOv10n make it suitable for: 

Smart Surveillance Systems: Real-time monitoring in public and private spaces. 

Autonomous Vehicles: Scene parsing in real-time for navigation and decision-making. 

Agricultural and Industrial Monitoring: Detection of machinery, workers, or livestock in large 

scenes. 

IoT Devices: Embedded deployment in smart cameras, wearable devices, and 

microcontrollers. 

 

8. CONCLUSION 

This chapter presented an in-depth exploration of scene detection using YOLOv10n, a 

lightweight and efficient object detection model designed for real-time applications on edge 

devices. By leveraging its compact architecture and anchor-free detection approach, YOLOv10n 

demonstrated a strong balance between speed and accuracy. The model was trained on a 

diverse dataset with effective augmentation and fine-tuning strategies. It achieved 71.2% 

mAP@0.5 and processed over 110 FPS, making it ideal for applications like smart surveillance, 

autonomous navigation, and IoT-based monitoring. While the model performs well overall, it has 

limitations in detecting small or overlapping objects and generalizing across drastically different 

scenes. These challenges highlight opportunities for further enhancement. In summary, 

YOLOv10n is a practical solution for real-time scene detection, especially where computational 

efficiency is critical. 
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